Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Heterostructure of 2D MoSe2 nanosheets vertically grown on bowl-like carbon for high-performance sodium storage

Nianxiang Shi1()Guangzeng Liu1Baojuan Xi2Xuguang An3Changhui Sun1Shenglin Xiong2
School of Chemistry and Chemistry Engineering, Qilu Normal University, Jinan 250200, China
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
Show Author Information

Graphical Abstract

View original image Download original image
The heterostructures of MoSe2 nanosheets vertically grown on bowl-like carbon (MoSe2@C) are designed and prepared by a template method coupled with selenylation treatment to boost storage sodium performance. MoSe2 vertically grown on the bowl-like carbon exposed two surfaces and form heterostructures not only enhance the utilization rate of electrode materials, but also facilitate electron transfer and accelerate reaction kinetics.

Abstract

Transition metal dichalcogenides are attractive anode materials for sodium ion batteries (SIBs) due to their high theoretical capacity and large interlayer spacing. However, its practical application is hampered by the sluggish kinetics of Na+ insertion and structure collapse caused by Na+ insertion/deinsertion. Herein, the heterostructures of MoSe2 nanosheets vertically growing on bowl-like carbon (MoSe2@C) are designed and prepared by a template method coupled with selenization treatment to boost storage sodium performance. The hollow and collapse could provide enough storage space for Na+ and alleviate the volume expansion during the charge/discharge processes. MoSe2 nanosheets vertically grown on carbon could expose more active sites for adsorbing Na+ to enhance the utilization rate of electrode materials. Moreover, building heterostructures by combining different phase components could facilitate Na+ diffusion and advance reaction kinetics. Benefiting from these merits, the bowl-like MoSe2@C shows outstanding reversible capacity (356.8 mAh·g−1 after 1500 cycles at 1 A·g−1) and remarkable rate performance (249.9 mAh·g−1 10 A·g−1).

Electronic Supplementary Material

Download File(s)
12274_2023_6274_MOESM1_ESM.pdf (3.8 MB)

References

[1]

Zhang, M. Z.; Liang, Y. Z.; Liu, F.; An, X. G.; Feng, J. K.; Xi, B. J.; Xiong, S. L. Ni2P immobilized on N, P-codoped porous carbon sheets for alkali metal ion batteries and storage mechanism. J. Mater. Chem. A 2023, 11, 8162–8172.

[2]

Liu, Y.; Wang, S. C.; Sun, X.; Zhang, J. Y.; Zaman, F. U.; Hou, L. R.; Yuan, C. Z. Sub-nanoscale engineering of MoO2 clusters for enhanced sodium storage. Energy Environ. Mater. 2023, 6, e12263.

[3]

Wu, S. Y.; Li, X.; Zhang, Y. Z.; Guan, Q. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, J. T.; Wang, Y. L.; Zhan, L. et al. Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Res. 2023, 16, 9158–9178.

[4]

Pan, X. N.; Xi, B. J.; Lu, H. B.; Zhang, Z. C. Y.; An, X. G.; Liu, J.; Feng, J. K.; Xiong, S. L. Molybdenum oxynitride atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical microspheres for efficient sodium storage. Nano-Micro Lett. 2022, 14, 163.

[5]

Huang, J. Q.; Guo, X. Y.; Du, X. Q.; Lin, X. Y.; Huang, J. Q.; Tan, H.; Zhu, Y.; Zhang, B. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ. Sci. 2019, 12, 1550–1557.

[6]

Liang, L. W.; Li, X. Y.; Zhao, F.; Zhang, J. Y.; Liu, Y.; Hou, L. R.; Yuan, C. Z. Construction and operating mechanism of high-rate Mo-doped Na3V2(PO4)3@C nanowires toward practicable wide-temperature-tolerance Na-ion and hybrid Li/Na-ion batteries. Adv. Energy Mater. 2021, 11, 2100287.

[7]

Tan, M. D.; Han, S. H.; Li, Z. B.; Cui, H.; Lei, D. N.; Wang, C. X. Compact Sn/C composite realizes long-life sodium-ion batteries. Nano Res. 2023, 16, 3804–3813.

[8]

Chen, J. M.; Cheng, Y.; Zhang, Q. B.; Luo, C.; Li, H. Y.; Wu, Y.; Zhang, H. H.; Wang, X.; Liu, H. D.; He, X. et al. Designing and understanding the superior potassium storage performance of nitrogen/phosphorus co-doped hollow porous bowl-like carbon anodes. Adv. Funct. Mater. 2021, 31, 2007158.

[9]

Guo, J.; Yang, J.; Guan, J. P.; Chen, X. H.; Zhu, Y.; Fu, H.; Liu, Q.; Wei, B.; Geng, H. B. Interface and electronic structure dual-engineering on MoSe2 with multi-ion/electron transportation channels for boosted sodium-ion half/full batteries. Chem. Eng. J. 2022, 450, 138007.

[10]

Xiang, Y. E.; Xu, L. Q.; Yang, L.; Ye, Y.; Ge, Z. F.; Wu, J. E.; Deng, W. T.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Natural stibnite for lithium-/sodium-ion batteries: Carbon dots evoked high initial Coulombic efficiency. Nano-Micro Lett. 2022, 14, 136.

[11]

Liu, Y.; Sun, Z. H.; Sun, X.; Lin, Y.; Tan, K.; Sun, J. F.; Liang, L. W.; Hou, L. R.; Yuan, C. Z. Construction of hierarchical nanotubes assembled from ultrathin V3S4@C nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms. Angew. Chem., Int. Ed. 2020, 59, 2473–2482.

[12]

Wang, J. W.; Yang, C. N.; Chen, S. Y.; Wu, Y. P.; Sun, X.; Huang, C. G.; Tang, R.; Ke, J. S.; Dai, Y.; Situ, Y. et al. 3D heterojunction assembled via interlayer-expanded MoSe2 nanosheets anchored on N-doped branched TiO2@C nanofibers as superior anode material for sodium-ion batteries. J. Alloys Compd. 2023, 938, 168350

[13]

Hu, X. J.; Zhu, R. Y.; Wang, B. B.; Wang, H.; Liu, X. J. Sn catalyst for efficient reversible conversion between MoSe2 and Mo/Na2Se for high-performance energy storage. Chem. Eng. J. 2022, 440, 135819.

[14]

Yousaf, M.; Wang, Y. S.; Chen, Y. J.; Wang, Z. P.; Firdous, A.; Ali, Z.; Mahmood, N.; Zou, R. Q.; Guo, S. J.; Han, R. P. S. A 3D trilayered CNT/MoSe2/C heterostructure with an expanded MoSe2 interlayer spacing for an efficient sodium storage. Adv. Energy Mater. 2019, 9, 1900567.

[15]

Liu, H.; Guo, H.; Liu, B. H.; Liang, M. F.; Lv, Z. L.; Adair, K. R.; Sun, X. L. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707480.

[16]

Zhang, X. Q.; Xiong, Y. L.; Dong, M. F.; Hou, Z. G.; Qian, Y. T. Construction of hierarchical MoSe2@C hollow nanospheres for efficient lithium/sodium ion storage. Inorg. Chem. Front. 2020, 7, 1691–1698.

[17]

Kang, W. P.; Wang, Y. Y.; Cao, D. W.; Kang, Z. X.; Sun, D. F. In-situ transformation into MoSe2/MoO3 heterogeneous nanostructures with enhanced electrochemical performance as anode material for sodium ion battery. J. Alloys Compd. 2018, 743, 410–418

[18]

Chen, J.; Pan, A. Q.; Wang, Y. P.; Cao, X. X.; Zhang, W. C.; Kong, X. Z.; Su, Q.; Lin, J. D.; Cao, G. Z.; Liang, S. Q. Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications. Energy Storage Mater. 2019, 21, 97–106.

[19]

Chong, S. K.; Wei, X. D.; Wu, Y. F.; Sun, L.; Shu, C. Y.; Lu, Q. B.; Hu, Y. Z.; Cao, G. Z.; Huang, W. Expanded MoSe2 nanosheets vertically bonded on reduced graphene oxide for sodium and potassium-ion storage. ACS Appl. Mater. Interfaces 2021, 13, 13158–13169.

[20]

Gao, J. Y.; Li, Y. P.; Peng, B.; Wang, G. R.; Zhang, G. Q. General construction of asymmetric bowl-like hollow nanostructures by grafting carbon-sheathed ultrasmall iron-based compounds onto carbon surfaces for use as superior anodes for sodium-ion hybrid capacitors. J. Mater. Chem. A 2019, 7, 24199–24204.

[21]

Lin, Y. M.; Qiu, Z. Z.; Li, D. Z.; Ullah, S.; Hai, Y.; Xin, H. L.; Liao, W. D.; Yang, B.; Fan, H. S.; Xu, J. et al. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater. 2018, 11, 67–74.

[22]

Wang, T.; Yao, K.; Hua, Y. B.; Shankar, E. G.; Shanthappa, R.; Yu, J. S. Rational design of MXene-MoS2 heterostructure with rapid ion transport rate as an advanced anode for sodium-ion batteries. Chem. Eng. J. 2023, 457, 141363.

[23]

Liu, P.; Han, J.; Zhu, K. J.; Dong, Z. H.; Jiao, L. F. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage. Adv. Energy Mater. 2020, 10, 2000741.

[24]

Huang, M.; Chu, Y. T.; Xi, B. J.; Shi, N. X.; Duan, B.; Zhang, C. H.; Chen, W. H.; Feng, J. K.; Xiong, S. L. TiO2-based heterostructures with different mechanism: A general synergistic effect toward high-performance sodium storage. Small 2020, 16, 2004054.

[25]

An, Y. L.; Tian, Y.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Rational design of sulfur-doped three-dimensional Ti3C2T x MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano 2021, 15, 15259–15273.

[26]

Liang, J.; Yu, X. Y.; Zhou, H.; Wu, H. B.; Ding, S. J.; Lou, X. W. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem. 2014, 126, 13017–13021.

[27]

Shi, N. X.; Xi, B. J.; Huang, M.; Tian, F.; Chen, W. H.; Li, H. B.; Feng, J. K.; Xiong, S. L. One-step construction of MoS0.74Se1.26/N-doped carbon flower-like hierarchical microspheres with enhanced sodium storage. ACS Appl. Mater. Interfaces 2019, 11, 44342–44351.

[28]

Mao, H.; Liu, L. M.; Shi, L.; Wu, H.; Lang, J. X.; Wang, K.; Zhu, T. X.; Gao, Y. Y.; Sun, Z. H.; Zhao, J. et al. High loading cotton cellulose-based aerogel self-standing electrode for Li-S batteries. Sci. Bull. 2020, 65, 803–811.

[29]

Shi, N. X.; Chu, Y. T.; Xi, B. J.; Huang, M.; Chen, W. H.; Duan, B.; Zhang, C. H.; Feng, J. K.; Xiong, S. L. Sandwich structures constructed by ZnSe⊂N-C@MoSe2 located in graphene for efficient sodium storage. Adv. Energy Mater. 2020, 10, 2002298.

[30]

Lei, T.; Gu, M. Y.; Fu, H. W.; Wang, J.; Wang, L. L.; Zhou, J.; Liu, H.; Lu, B. A. Bond modulation of MoSe2+ x driving combined intercalation and conversion reactions for high performance K cathodes. Chem. Sci. 2023, 14, 2528–2536.

[31]

Shi, N. X.; Xi, B. J.; Huang, M.; Ma, X. J.; Li, H. B.; Feng, J. K.; Xiong, S. L. Hierarchical octahedra constructed by Cu2S/MoS2⊂carbon framework with enhanced sodium storage. Small 2020, 16, 2000952.

[32]

Lu, T.; Liu, B. Q.; Zeng, F. Y.; Cheng, G.; Chu, S. L.; Xie, M. L.; Chen, Z.; Hou, Z. H. Decoration of carbon encapsulated nitrogen-rich Mo x N with few-layered MoSe2 nanosheets for high-performance sodium-ion storage. J. Energy Chem. 2022, 74, 332–340.

[33]

Wang, X. W.; Tan, Y. Q.; Liu, Z. X.; Fan, Y. Q.; Li, M. N.; Younus, H. A.; Duan, J. F.; Deng, H. Q.; Zhang, S. G. New insight into the confinement effect of microporous carbon in Li/Se battery chemistry: A cathode with enhanced conductivity. Small 2020, 16, 2000266.

[34]

Gao, S. W.; He, Y. X.; Yue, G. C.; Li, H. K.; Li, S.; Liu, J. C.; Miao, B. B.; Bai, J.; Cui, Z. M.; Wang, N. et al. Pea-like MoS2@NiS1.03-carbon heterostructured hollow nanofibers for high-performance sodium storage. Carbon Energy 2023, 5, e319.

[35]

Kim, J. K.; Lim, K. E.; Hwang, W. J.; Kang, Y. C.; Park, S. K. Hierarchical tubular-structured MoSe2 nanosheets/N-doped carbon nanocomposite with enhanced sodium storage properties. ChemSusChem 2020, 13, 1546–1555.

[36]

Huang, M.; Xi, B. J.; Shi, N. X.; Feng, J. K.; Qian, Y. T.; Xue, D. F.; Xiong, S. L. Quantum-matter Bi/TiO2 heterostructure embedded in N-doped porous carbon nanosheets for enhanced sodium storage. Small Struct. 2021, 2, 2000085.

[37]

Li, B. S.; Xi, B. J.; Feng, Z. Y.; Lin, Y.; Liu, J. C.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage. Adv. Mater. 2018, 30, 1705788.

[38]

Yun, Y. X.; Xi, B. J.; Gu, Y.; Tian, F.; Chen, W. H.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Cu3P nanoparticles confined in nitrogen/phosphorus dual-doped porous carbon nanosheets for efficient potassium storage. J. Energy Chem. 2022, 66, 339–347.

[39]

Niu, F. E.; Yang, J.; Wang, N. N.; Zhang, D. P.; Fan, W. L.; Yang, J.; Qian, Y. T. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700522.

[40]

Shi, N. X.; Liu, G. Z.; Xi, B. J.; An, X. G.; Sun, C. H.; Liu, X. Z.; Xiong, S. L. MoSe2/TiO2 heterostructure integrated in N-doped carbon nanosheets assembled porous core–shell microspheres for enhanced sodium storage. Nano Res. 2023, 16, 9398–9406.

[41]

Le, Z. Y.; Liu, F.; Nie, P.; Li, X. R.; Liu, X. Y.; Bian, Z. F.; Chen, G.; Wu, H. B.; Lu, Y. F. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 2017, 11, 2952–2960.

[42]

Fei, R. X.; Wang, H. W.; Wang, Q.; Qiu, R. Y.; Tang, S. S.; Wang, R.; He, B. B.; Gong, Y. S.; Fan, H. J. In situ hard-template synthesis of hollow bowl-like carbon: A potential versatile platform for sodium and zinc ion capacitors. Adv. Energy Mater. 2020, 10, 2002741

[43]

Xie, X. Q.; Ao, Z. M.; Su, D. W.; Zhang, J. Q.; Wang, G. X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Mater. 2015, 25, 1393–1403.

Nano Research
Pages 4023-4030
Cite this article:
Shi N, Liu G, Xi B, et al. Heterostructure of 2D MoSe2 nanosheets vertically grown on bowl-like carbon for high-performance sodium storage. Nano Research, 2024, 17(5): 4023-4030. https://doi.org/10.1007/s12274-023-6274-x
Topics:
Metrics & Citations  
Article History
Copyright
Return