AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A Li3P nanoparticle dispersion strengthened ultrathin Li metal electrode for high energy density rechargeable batteries

Lin Fu1,2,§Xiancheng Wang2,§Bao Zhang3Zihe Chen2Yuanjian Li2,4Yongming Sun2( )
Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), Singapore 138634, Singapore

§ Lin Fu and Xiancheng Wang contributed equally to this work.

Show Author Information

Graphical Abstract

A Li3P nanoparticle dispersion strengthened ultrathin Li/Li3P (LLP) composite foil has been explored by facile mechanical rolling/stacking operations, where Li3P facilitates the decrease of the electrochemical Li nucleation barrier and the fast diffusion of charges within the electrode. LiCoO2||LLP full cell with 15 μm-thick anode displays high energy density of ~ 522 W·h·kg−1 at 0.5 C.

Abstract

Achievement of lithium (Li) metal anode with thin thickness (e.g., ≤ 30 µm) is highly desirable for rechargeable high energy density batteries. However, the fabrication and application of such thin Li metal foil electrode remain challenging due to the poor mechanical processibility and inferior electrochemical performance of metallic Li. Here, mechanico-chemical synthesis of robust ultrathin Li/Li3P (LLP) composite foils (~ 15 µm) is demonstrated by employing repeated mechanical rolling/stacking operations using red P and metallic Li as raw materials. The in-situ formed Li+-conductive Li3P nanoparticles in metallic Li matrix and their tight bonding strengthen the mechanical durability and enable the successful fabrication of free-standing ultrathin Li metal composite foil. Besides, it also reduces the electrochemical Li nucleation barrier and homogenizes Li plating/stripping behavior. When matching to high-voltage LiCoO2, the full cell with a low negative/positive (N/P) capacity ratio of ~ 1.5 offers a high energy density of ~ 522 W·h·kg−1 at 0.5 C based on the mass of cathode and anode. Taking into account its facile manufacturing, potentially low cost, and good electrochemical performance, we believe that such an ultrathin composite Li metal foil design with nanoparticle-dispersion-strengthened mechanism may boost the development of high energy density Li metal batteries.

Electronic Supplementary Material

Download File(s)
12274_2023_6275_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[2]

Peng, K. Y.; Tang, P.; Yao, Q. Q.; Dou, Q. Y.; Yan, X. B. Bifunctional fluoropyridinium-based cationic electrolyte additive for dendrite-free Li metal anode. Nano Res. 2023, 16, 9530–9537.

[3]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[4]

Liu, D. H.; Bai, Z. Y.; Li, M.; Yu, A. P.; Luo, D.; Liu, W. W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z. W. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives. Chem. Soc. Rev. 2020, 49, 5407–5445.

[5]

Hao, Z. M.; Li, G.; Lu, Y.; Cai, Y. C.; Yang, G. J.; Chen, J. Anion-derived solid electrolyte interphase realized in usual-concentration electrolyte for Li metal batteries. Nano Res. 2023, 16, 12647–12654.

[6]

Zhang, X. Q.; Li, T.; Li, B. Q.; Zhang, R.; Shi, P.; Yan, C.; Huang, J. Q.; Zhang, Q. A sustainable solid electrolyte interphase for high-energy-density lithium metal batteries under practical conditions. Angew. Chem., Int. Ed. 2020, 59, 3252–3257.

[7]

Hu, M. T.; Tong, Z. M.; Cui, C.; Zhai, T. Y.; Li, H. Q. Facile, atom-economic, chemical thinning strategy for ultrathin lithium foils. Nano Lett. 2022, 22, 3047–3053.

[8]

Gao, J. L.; Chen, C. J.; Dong, Q.; Dai, J. Q.; Yao, Y. G.; Li, T. Y.; Rundlett, A.; Wang, R. L.; Wang, C. W.; Hu, L. B. Stamping flexible Li alloy anodes. Adv. Mater. 2021, 33, 2005305.

[9]

Zhan, Y. X.; Shi, P.; Ma, X. X.; Jin, C. B.; Zhang, Q. K.; Yang, S. J.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q. Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions. Adv. Energy Mater. 2022, 12, 2103291.

[10]

Niu, C. J.; Lee, H.; Chen, S. R.; Li, Q. Y.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551–559.

[11]

Du, J. M.; Wang, W. Y.; Wan, M. T.; Wang, X. C.; Li, G. C.; Tan, Y. C.; Li, C. H.; Tu, S. B.; Sun, Y. M. Doctor-blade casting fabrication of ultrathin Li metal electrode for high-energy-density batteries. Adv. Energy Mater. 2021, 11, 2102259.

[12]

Kato, A.; Hayashi, A.; Tatsumisago, M. Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. J. Power Sources 2016, 309, 27–32.

[13]

Zhang, C.; Fan, H. M.; Chen, X. L.; Xu, H.; Lou, J. T.; Li, Y.; Huang, Y. H.; Li, S. Non-sticky Li-alloy leaves for long-lasting secondary batteries. Energy Environ. Sci. 2022, 15, 5251–5260.

[14]

Fu, L.; Wan, M. T.; Zhang, B.; Yuan, Y. F.; Jin, Y.; Wang, W. Y.; Wang, X. C.; Li, Y. J.; Wang, L.; Jiang, J. J. et al. A lithium metal anode surviving battery cycling above 200 °C. Adv. Mater. 2020, 32, 2000952.

[15]

Chen, H.; Yang, Y. F.; Boyle, D. T.; Jeong, Y. K.; Xu, R.; De Vasconcelos, L. S.; Huang, Z. L.; Wang, H. S.; Wang, H. X.; Huang, W. X. et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy 2021, 6, 790–798.

[16]

Xu, B. B.; Guo, F. L. Upper and lower bounds on the creep strain and stress relaxation induced by interface diffusion in metal-matrix particulate composites. Int. J. Solids Struct. 2021, 216, 222–230.

[17]

Ghodrati, H.; Ghomashchi, R. Effect of graphene dispersion and interfacial bonding on the mechanical properties of metal matrix composites: An overview. FlatChem 2019, 16, 100113.

[18]

Alaneme, K. K.; Okotete, E. A.; Fajemisin, A. V.; Bodunrin, M. O. Applicability of metallic reinforcements for mechanical performance enhancement in metal matrix composites: A review. Arab J. Basic Appl. Sci. 2019, 26, 311–330.

[19]

Paknia, A.; Pramanik, A.; Dixit, A. R.; Chattopadhyaya, S. Effect of size, content and shape of reinforcements on the behavior of metal matrix composites (MMCs) under tension. J. Mater. Eng. Perform. 2016, 25, 4444–4459.

[20]

Liu, Q.; Qi, F. G.; Wang, Q.; Ding, H. M.; Chu, K. Y.; Liu, Y.; Li, C. The influence of particles size and its distribution on the degree of stress concentration in particulate reinforced metal matrix composites. Mater. Sci. Eng. A 2018, 731, 351–359.

[21]

Tjong, S. C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv. Eng. Mater. 2007, 9, 639–652.

[22]

Yang, H.; Jiang, L.; Balog, M.; Krizik, P.; Schoenung, J. M. Reinforcement size dependence of load bearing capacity in ultrafine-grained metal matrix composites. Metall. Mater. Trans. A 2017, 48, 4385–4392.

[23]

Yu, W.; Yang, J.; Li, J. L.; Zhang, K.; Xu, H. M.; Zhou, X.; Chen, W.; Loh, K. P. Facile production of phosphorene nanoribbons towards application in lithium metal battery. Adv. Mater. 2021, 33, e2102083.

[24]

Kim, Y.; Koo, D.; Ha, S.; Jung, S. C.; Yim, T.; Kim, H.; Oh, S. K.; Kim, D. M.; Choi, A.; Kang, Y. Y. et al. Two-dimensional phosphorene-derived protective layers on a lithium metal anode for lithium-oxygen batteries. ACS Nano 2018, 12, 4419–4430.

[25]

Fan, X. L.; Ji, X.; Han, F. D.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J. J.; Wang, C. S. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 2018, 4, eaau9245.

[26]

Xu, C.; Ahmad, Z.; Aryanfar, A.; Viswanathan, V.; Greer, J. R. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl. Acad. Sci. USA 2017, 114, 57–61.

[27]

Li, S. J.; Wei, B. W.; Xu, J. J.; Xu, G. M.; Li, Y.; Wang, Z. D. High solid–solution strengthening mechanism of a novel aluminum-lithium alloy fabricated by electromagnetic near-net shape technology. Mater. Sci. Eng. A 2022, 829, 142148.

[28]

Zhang, S.; Qian, H. J.; Liu, Z. H.; Ju, H. Y.; Lu, Z. Y.; Zhang, H. M.; Chi, L. F.; Cui, S. X. Towards unveiling the exact molecular structure of amorphous red phosphorus by single-molecule studies. Angew. Chem., Int. Ed. 2019, 58, 1659–1663.

[29]

Wang, T. R.; Duan, J.; Zhang, B.; Luo, W.; Ji, X.; Xu, H. H.; Huang, Y.; Huang, L. Q.; Song, Z. Y.; Wen, J. Y. et al. A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy Environ. Sci. 2022, 15, 1325–1333.

[30]

Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K. H.; Zhang, J. G.; Thornton, K.; Dasgupta, N. P. Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2016, 2, 790–801.

[31]

Zhao, Q.; Hao, X. G.; Su, S. M.; Ma, J. B.; Hu, Y.; Liu, Y.; Kang, F. Y.; He, Y. B. Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. J. Mater. Chem. A 2019, 7, 15871–15879.

[32]

Zhu, P. F.; Jiang, Z. P.; Sun, W.; Yang, Y.; Silvester, D. S.; Hou, H. S.; Banks, C. E.; Hu, J. G.; Ji, X. B. Built-in anionic equilibrium for atom-economic recycling of spent lithium-ion batteries. Energy Environ. Sci. 2023, 16, 3564–3575.

[33]
Thermo scientific avantage data system for XPS [Online]. https://www.thermofisher.cn/cn/zh/home/materials-science/learning-center/periodic-table.html (accessed Feb 1, 2023).
[34]

Zhang, C.; Lyu, R.; Lv, W.; Li, H.; Jiang, W.; Li, J.; Gu, S. C.; Zhou, G. M.; Huang, Z. J.; Zhang, Y. B. et al. A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium. Adv. Mater. 2019, 31, 1904991.

[35]

Wu, H. L.; Wei, K. Y.; Tang, B. H.; Cui, Y. X.; Zhao, Y.; Xue, M. Z.; Li, C. L.; Cui, Y. H. A novel Li3P-VP nanocomposite fabricated by pulsed laser deposition as anode material for high-capacity lithium ion batteries. J. Electroanal. Chem. 2019, 841, 21–25.

[36]

Liang, X.; Li, X.; Xiang, Q. X.; Zhang, S. J.; Cao, Y.; Han, M. Y.; Zhang, Y. M.; Zhou, C. Y.; Xu, Y. H.; Mao, C. et al. Surficial oxidation of phosphorus for strengthening interface interaction and enhancing lithium-storage performance. Nano Lett. 2022, 22, 9335–9342.

[37]

Jagger, B.; Pasta, M. Solid electrolyte interphases in lithium metal batteries. Joule 2023, 7, 2228–2244.

[38]

Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2015, 28, 1853–1858.

[39]

Peng, K. Y.; Chen, Z. Y.; Zhao, X. Y.; Shi, K. Y.; Zhu, C. B.; Yan, X. B. Dual-conductive Li alloy composite anode constructed by a synergetic conversion–alloying reaction with LiMgPO4. Chem. Eng. J. 2022, 439, 135705.

[40]

Liu, Y. Y.; Lin, D. C.; Li, Y. Z.; Chen, G. X.; Pei, A.; Nix, O.; Li, Y. B.; Cui, Y. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 2018, 9, 3656.

[41]

Gao, Y.; Yan, Z. F.; Gray, J. L.; He, X.; Wang, D. W.; Chen, T. H.; Huang, Q. Q.; Li, Y. C.; Wang, H. Y.; Kim, S. H. et al. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 2019, 18, 384–389.

[42]

Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem., Int. Ed. 2018, 57, 5301–5305.

[43]

Park, J. B.; Choi, C.; Yu, S.; Chung, K. Y.; Kim, D. W. Porous lithiophilic Li-Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate. Adv. Energy Mater. 2021, 11, 2101544.

[44]

Ju, Z. J.; Xie, Q. F.; Sheng, O. W.; Wu, X. X.; Tan, Y. H.; Hong, M.; Tao, X. Y.; Liang, Z. Biomass-derived anion-anchoring nano-CaCO3 coating for regulating ion transport on Li metal surface. Nano Lett. 2022, 22, 5473–5480.

[45]

Xiao, J.; Li, Q. Y.; Bi, Y. J.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B. B. et al. Understanding and applying Coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561–568.

[46]

Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.

[47]

Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C. M.; Rodriguez-Martínez, L. M.; Armand, M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives. Angew. Chem., Int. Ed. 2018, 57, 15002–15027.

Nano Research
Pages 4031-4038
Cite this article:
Fu L, Wang X, Zhang B, et al. A Li3P nanoparticle dispersion strengthened ultrathin Li metal electrode for high energy density rechargeable batteries. Nano Research, 2024, 17(5): 4031-4038. https://doi.org/10.1007/s12274-023-6275-9
Topics:

825

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 09 August 2023
Revised: 07 October 2023
Accepted: 18 October 2023
Published: 02 January 2024
© Tsinghua University Press 2023
Return