AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fast-response, high-sensitivity multi-modal tactile sensors based on PPy/Ti3C2Tx films for multifunctional applications

Guangshuai XiDongzhi Zhang( )Mingcong TangHao ZhangYuehang SunYubiao ZhangHaolin CaiHui XiaDandi Zhou
College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Graphical Abstract

Flexible multimodal sensors based on polypyrrole (PPy)/Ti3C2Tx films show high response to both humidity and pressure. Ultimately, the data acquisition and analysis are carried out through the microcontroller, and the signal is transmitted to the mobile platform through Bluetooth to achieve real-time monitoring of human respiration and movement signals.

Abstract

In recent years, multi-modal flexible tactile sensors have become an important direction in the development of electronic skin because of their excellent sensitivity, flexibility and wearable properties. In this work, a humidity-pressure multi-modal flexible sensor based on polypyrrole (PPy)/Ti3C2Tx sensitive film packaged with porous polydimethylsiloxane (PDMS) is investigated by combining the sensitive structure generation mechanism of in situ polymerization to achieve the simultaneous detection of humidity and pressure, which has a sensitivity of 89,113.4 Ω/% RH in a large humidity range of 0%–97% RH, and response/recovery time of 2.5/1.9 s. The tactile pressure sensing has a high sensitivity, a fast response of 67/52 ms, and a wide detection limit. The device also has excellent performance in terms of stability and repeatability, making it promising for respiratory pattern and motion detection. This work provides a new solution to address the construction of multi-modal tactile sensors with potential applications in the fields of medical health, epidemic prevention.

References

[1]

Duan, Z. H.; Jiang, Y. D.; Tai, H. L. Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C 2021, 9, 14963–14980.

[2]

Tai, H. L.; Duan, Z. H.; Wang, Y.; Wang, S.; Jiang, Y. D. Paper-based sensors for gas, humidity, and strain detections: A review. ACS Appl. Mater. Interfaces 2020, 12, 31037–31053.

[3]

Wang, Y. X.; Yue, Y.; Cheng, F.; Cheng, Y. F.; Ge, B. H.; Liu, N. S.; Gao, Y. H. Ti3C2T x MXene-based flexible piezoresistive physical sensors. ACS Nano 2022, 16, 1734–1758.

[4]

Zhang, H.; Chen, H. M.; Lee, J. H.; Kim, E.; Chan, K. Y.; Venkatesan, H.; Adegun, M. H.; Agbabiaka, O. G.; Shen, X.; Zheng, Q. B. et al. Bioinspired chromotropic ionic skin with in-plane strain/temperature/pressure multimodal sensing and ultrahigh stimuli discriminability. Adv. Funct. Mater. 2022, 32, 2208362.

[5]

Duan, Z. H.; Zhao, Q. N.; Wang, S.; Huang, Q.; Yuan, Z.; Zhang, Y. J.; Jiang, Y. D.; Tai, H. L. Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sens. Actuators B: Chem. 2020, 317, 128204.

[6]

Zhang, M. X.; Duan, Z. H.; Zhang, B. Y.; Yuan, Z.; Zhao, Q. N.; Jiang, Y. D.; Tai, H. L. Electrochemical humidity sensor enabled self-powered wireless humidity detection system. Nano Energy 2023, 115, 108745.

[7]

Lee, J. H.; Heo, J. S.; Kim, Y. J.; Eom, J.; Jung, H. J.; Kim, J. W.; Kim, I.; Park, H. H.; Mo, H. S.; Kim, Y. H. et al. A behavior-learned cross-reactive sensor matrix for intelligent skin perception. Adv. Mater. 2020, 32, 2000969.

[8]

Zhao, Q. N.; Jiang, Y. D.; Yuan, L.; Yuan, Z.; Zhang, B. Y.; Liu, B. H.; Zhang, M. X.; Huang, Q.; Duan, Z. H.; Tai, H. L. Hydrophilic hyaluronic acid-induced crumpling of Nb2CT x nanosheets: Enabling fast humidity sensing based on primary battery. Sens. Actuators B: Chem. 2023, 392, 134082

[9]

Xu, L. Z.; Gutbrod, S. R.; Bonifas, A. P.; Su, Y. W.; Sulkin, M. S.; Lu, N. S.; Chung, H. J.; Jang, K. I.; Liu, Z. J.; Ying, M. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 2014, 5, 3329

[10]

Yang, R. X.; Dutta, A.; Li, B. W.; Tiwari, N.; Zhang, W. Q.; Niu, Z. Y.; Gao, Y. Y.; Erdely, D.; Xin, X.; Li, T. J. et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. Nat. Commun. 2023, 14, 2907.

[11]

Zhang, C.; Chen, H. M.; Ding, X. H.; Lorestani, F.; Huang, C. L.; Zhang, B. W.; Zheng, B.; Wang, J.; Cheng, H. Y.; Xu, Y. Human motion-driven self-powered stretchable sensing platform based on laser-induced graphene foams. Appl. Phys. Rev. 2022, 9, 011413.

[12]

Chen, X.; Li, R. Z.; Niu, G. Y.; Xin, M. Y.; Xu, G. Z.; Cheng, H. Y.; Yang, L. Porous graphene foam composite-based dual-mode sensors for underwater temperature and subtle motion detection. Chem. Eng. J. 2022, 444, 136631.

[13]

Yang, C. C.; Abodurexiti, A.; Maimaitiyiming, X. Flexible humidity and pressure sensors realized by molding and inkjet printing processes with sandwich structure. Macro. Mater. Eng. 2020, 305, 2000287.

[14]

Ma, Z.; Zhang, J.; Li, J. A.; Shi, Y.; Pan, L. J. Frequency-enabled decouplable dual-modal flexible pressure and temperature sensor. IEEE Electron Device Lett. 2020, 41, 1568–1571.

[15]

Shin, Y. E.; Park, Y. J.; Ghosh, S. K.; Lee, Y.; Park, J.; Ko, H. Ultrasensitive multimodal tactile sensors with skin-inspired microstructures through localized ferroelectric polarization. Adv. Sci. 2022, 9, 2105423.

[16]

Yang, G.; Tian, M. Z.; Huang, P.; Fu, Y. F.; Li, Y. Q.; Fu, Y. Q.; Wang, X. Q.; Li, Y.; Hu, N.; Fu, S. Y. Flexible pressure sensor with a tunable pressure-detecting range for various human motions. Carbon 2021, 173, 736–743.

[17]

Li, J.; Fang, L. C.; Sun, B. H.; Li, X. X.; Kang, S. H. Review-recent progress in flexible and stretchable piezoresistive sensors and their applications. J. Electrochem. Soc. 2020, 167, 037561.

[18]

Li, Y.; Zhao, M. J.; Yan, Y. D.; He, L. X.; Wang, Y. Y.; Xiong, Z. P.; Wang, S. Q.; Bai, Y. Y.; Sun, F. Q.; Lu, Q. F. et al. Multifunctional biomimetic tactile system via a stick-slip sensing strategy for human-machine interactions. npj Flex. Electron. 2022, 6, 46.

[19]

Wang, H. B.; Xiang, Z. H.; Zhao, P. C.; Wan, J.; Miao, L. M.; Guo, H.; Xu, C.; Zhao, W.; Han, M. D.; Zhang, H. X. Double-sided wearable multifunctional sensing system with anti-interference design for human-ambience interface. ACS Nano 2022, 16, 21646–21646.

[20]

Su, P. G.; Wang, C. P. Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly-[3-(methacrylamino) propyl] trimethyl ammonium chloride composite materials. Sens. Actuators B: Chem. 2008, 129, 538–543.

[21]

Tang, X. H.; Raskin, J. P.; Kryvutsa, N.; Hermans, S.; Slobodian, O.; Nazarov, A. N.; Debliquy, M. An ammonia sensor composed of polypyrrole synthesized on reduced graphene oxide by electropolymerization. Sens. Actuators B: Chem. 2020, 305, 127423.

[22]

Liu, B. H.; Liu, X. Y.; Yang, Z.; Jiang, Y. D.; Su, Y. J.; Ma, J. Y.; Tai, H. L. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sens. Actuators B: Chem. 2019, 295, 86–92.

[23]

Tai, H. L.; Duan, Z. H.; He, Z. Z.; Li, X.; Xu, J. L.; Liu, B. H.; Jiang, Y. D. Enhanced ammonia response of Ti3C2T x nanosheets supported by TiO2 nanoparticles at room temperature. Sens. Actuators B: Chem. 2019, 298, 126874.

[24]

Cheng, Y. F.; Ma, Y. N.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y. et al. Bioinspired microspines for a high-performance spray Ti3C2T x MXene-based piezoresistive sensor. ACS Nano 2020, 14, 2145–2155.

[25]

Pu, J. H.; Zhao, X.; Zha, X. J.; Bai, L.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 2019, 7, 15913–15923.

[26]

Wang, H. W.; Naguib, M.; Page, K.; Wesolowski, D. J.; Gogotsi, Y. Resolving the structure of Ti3C2T x MXenes through multilevel structural modeling of the atomic pair distribution function. Chem. Mater. 2016, 28, 349–359.

[27]

Ho, D. H.; Choi, Y.; Jo, S. B.; Myoung, J. M.; Cho, J. H. Sensing with MXenes: Progress and prospects. Adv. Mater. 2021, 33, 2005846.

[28]

An, H.; Habib, T.; Shah, S.; Gao, H. L.; Radovic, M.; Green, M. J.; Lutkenhaus, J. L. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 2018, 4, eaaq0118.

[29]

Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale "brick-and-mortar" architecture. ACS Nano 2019, 13, 649–659.

[30]

Wang, K.; Lou, Z.; Wang, L. L.; Zhao, L. J.; Zhao, S. F.; Wang, D. Y.; Han, W.; Jiang, K.; Shen, G. Z. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 2019, 13, 9139–9147.

[31]

Yang, M. Y.; Huang, M. L.; Li, Y. Z.; Feng, Z. S.; Huang, Y.; Chen, H. J.; Xu, Z. Q.; Liu, H. G.; Wang, Y. Printing assembly of flexible devices with oxidation stable MXene for high performance humidity sensing applications. Sens. Actuators B: Chem. 2022, 364, 131867.

[32]

Su, E. M.; Wu, F. M.; Zhao, S. Q.; Li, Y. T.; Deng, C. H. Layered MXene/aramid composite film for a soft and sensitive pressure sensor. ACS Appl. Mater. Interfaces 2022, 14, 15849–15858.

[33]

Luo, W. L.; Sun, Y.; Han, Y. Q.; Ding, J. X.; Li, T. X.; Hou, C. P.; Ma, Y. Flexible Ti3C2T x MXene/polypyrrole composite films for high-performance all-solid asymmetric supercapacitors. Electrochim. Acta 2023, 441, 141818.

[34]

Shi, X. Y.; Gao, M. H.; Hu, W. W.; Luo, D.; Hu, S. Z.; Huang, T.; Zhang, N.; Wang, Y. Largely enhanced adsorption performance and stability of MXene through in-situ depositing polypyrrole nanoparticles. Sep. Purif. Technol. 2022, 287, 120596.

[35]

Yang, R. X.; Zhang, W. Q.; Tiwari, N.; Yan, H.; Li, T. J.; Cheng, H. Y. Multimodal sensors with decoupled sensing mechanisms. Adv. Sci. 2022, 9, 2202470.

[36]

Li, T. K.; Chen, L. L.; Yang, X.; Chen, X.; Zhang, Z. H.; Zhao, T. T.; Li, X. F.; Zhang, J. H. A flexible pressure sensor based on an MXene-textile network structure. J. Mater. Chem. C 2019, 7, 1022–1027.

[37]

Lu, Y. Y.; Yang, G.; Shen, Y. J.; Yang, H. Y.; Xu, K. C. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 2022, 14, 150.

[38]

Liang, Y. N.; Ding, Q. L.; Wang, H.; Wu, Z. X.; Li, J. Y.; Li, Z. Y.; Tao, K.; Gui, X. C.; Wu, J. Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 2022, 14, 183.

[39]

Fu, Y. M.; He, H. X.; Zhao, T. M.; Dai, Y. T.; Han, W. X.; Ma, J.; Xing, L. L.; Zhang, Y.; Xue, X. Y. A self-powered breath analyzer based on PANI/PVDF piezo-gas-sensing arrays for potential diagnostics application. Nano-Micro Lett. 2018, 10, 76.

[40]

Kim, R. H.; Bae, M. H.; Kim, D. G.; Cheng, H. Y.; Kim, B. H.; Kim, D. H.; Li, M.; Wu, J.; Du, F.; Kim, H. S. et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 2011, 11, 3881–3886.

[41]

Yang, Z. J.; Lv, S. Y.; Zhang, Y. Y.; Wang, J.; Jiang, L.; Jia, X. T.; Wang, C. G.; Yan, X.; Sun, P.; Duan, Y. et al. Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 2022, 14, 56.

[42]

Shi, J. D.; Li, X. M.; Cheng, H. Y.; Liu, Z. J.; Zhao, L. Y.; Yang, T. T.; Dai, Z. H.; Cheng, Z. G.; Shi, E. Z.; Yang, L. et al. Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv. Funct. Mater. 2016, 26, 2078–2084.

[43]

Xing, H.; Li, X.; Lu, Y. L.; Wu, Y.; He, Y.; Chen, Q. M.; Liu, Q. J.; Han, R. P. S. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens. Actuators B: Chem. 2022, 361, 131704

[44]

Jeong, W.; Song, J.; Bae, J.; Nandanapalli, K. R.; Lee, S. Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl. Mater. Interfaces 2019, 11, 44758–44763.

[45]

Zhu, Z.; Lin, W. D.; Lin, Z. Y.; Chuang, M. H.; Wu, R. J.; Chavali, M. Conductive polymer (graphene/PPy)-BiPO4 composite applications in humidity sensors. Polymers 2021, 13, 2013.

[46]

Jia, G. W.; Zheng, A.; Wang, X.; Zhang, L.; Li, L.; Li, C. X.; Zhang, Y.; Cao, L. Y. Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor. Sens. Actuators B: Chem. 2021, 346, 130507.

[47]

Niu, G. Y.; Wang, Z. H.; Xue, Y.; Yan, J. Y.; Dutta, A.; Chen, X.; Wang, Y.; Liu, C. S.; Du, S. J.; Guo, L. G. et al. Pencil-on-paper humidity sensor treated with NaCl solution for health monitoring and skin characterization. Nano Lett. 2023, 23, 1252–1260.

[48]

Liu, Y. C.; Li, X. F.; Yang, H. L.; Zhang, P.; Wang, P. H.; Sun, Y.; Yang, F. Z.; Liu, W. Y.; Li, Y. J.; Tian, Y. et al. Skin-interfaced superhydrophobic insensible sweat sensors for evaluating body thermoregulation and skin barrier functions. ACS Nano 2023, 17, 5588–5599.

[49]

Lu, Y.; Yue, Y. Y.; Ding, Q. Q.; Mei, C. T.; Xu, X. W.; Wu, Q. L.; Xiao, H. N.; Han, J. Q. Self-recovery, fatigue-resistant, and multifunctional sensor assembled by a nanocellulose/carbon nanotube nanocomplex-mediated hydrogel. ACS Appl. Mater. Interfaces 2021, 13, 50281–50297.

[50]

Chang, K. Q.; Li, L.; Zhang, C.; Ma, P. M.; Dong, W. F.; Huang, Y. P.; Liu, T. X. Compressible and robust PANI sponge anchored with erected MXene flakes for human motion detection. Composites A: Appl. Sci. Manufacturing 2021, 151, 106671.

[51]

Ge, G.; Cai, Y. C.; Dong, Q. C.; Zhang, Y. Z.; Shao, J. J.; Huang, W.; Dong, X. C. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 2018, 10, 10033–10040.

[52]

Iglio, R.; Mariani, S.; Robbiano, V.; Strambini, L.; Barillaro, G. Flexible polydimethylsiloxane foams decorated with multiwalled carbon nanotubes enable unprecedented detection of ultralow strain and pressure coupled with a large working range. ACS Appl. Mater. Interfaces 2018, 10, 13877–13885.

[53]

Yang, L.; Liu, Y.; Filipe, C. D. M.; Ljubic, D.; Luo, Y. W.; Zhu, H.; Yan, J. X.; Zhu, S. P. Development of a highly sensitive, broad-range hierarchically structured reduced graphene oxide/polyHIPE foam for pressure sensing. ACS Appl. Mater. Interfaces 2019, 11, 4318–4327.

[54]

Yang, L.; Wang, H. L.; Yuan, W. J.; Li, Y. H.; Gao, P.; Tiwari, N.; Chen, X.; Wang, Z. H.; Niu, G. Y.; Cheng, H. Y. Wearable pressure sensors based on MXene/tissue papers for wireless human health monitoring. ACS Appl. Mater. Interfaces 2021, 13, 60531–60543.

Nano Research
Pages 4410-4419
Cite this article:
Xi G, Zhang D, Tang M, et al. Fast-response, high-sensitivity multi-modal tactile sensors based on PPy/Ti3C2Tx films for multifunctional applications. Nano Research, 2024, 17(5): 4410-4419. https://doi.org/10.1007/s12274-023-6276-8
Topics:

784

Views

12

Crossref

9

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 25 August 2023
Revised: 18 October 2023
Accepted: 18 October 2023
Published: 12 December 2023
© Tsinghua University Press 2023
Return