Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing free-standing and mechanical robust membrane materials capable of superior enrichment of phosphopeptides for analyzing and identifying the specific phosphoproteome of cancer cells is significant in understanding the molecular mechanisms of cancer development and exploring new therapeutic approaches, but still a significant challenge in materials design. To this end, we firstly constructed highly flexible ZrTiO4 nanofibrous membranes (NFMs) with excellent mechanical stability through a cost-effective and scalable electrospinning and subsequent calcination technique. Then, to further increase the enrichment capacity of the phosphopeptide, the biomimetic TiO2@ZrTiO4 NFMs with root hair or leaf like branch microstructure are developed by the hydrothermal post-synthetic modification of ZrTiO4 NFMs through growing unfurling TiO2 nanosheets onto the ZrTiO4 nanofibers. Importantly, remarkable flexibility and mechanical stability enable the resulting TiO2@ZrTiO4 NFMs excellent practicability, while the biomimetic microstructure allows it outstanding enrichment ability of the phosphopeptide and identification ability of the specific phosphoproteins in the digest of cervical cancer cells. Specifically, 6770 phosphopeptides can be enriched by TiO2@ZrTiO4 NFMs (2205 corresponding phosphoproteins can be identified), and the value is much higher than that of ZrTiO4 NFMs (6399 phosphopeptides and 2132 identified phosphoproteins) and commercial high-performance TiO2 particles (4525 phosphopeptides and 1811 identified phosphoproteins). These results demonstrate the super ability of TiO2@ZrTiO4 NFMs in phosphopeptide enrichment and great potential for exploring the pathogenesis of cancer.
Hijazi, M.; Smith, R.; Rajeeve, V.; Bessant, C.; Cutillas, P. R. Reconstructing kinase network topologies from phosphoproteomics data reveals cancer-associated rewiring. Nat. Biotechnol. 2020, 38, 493–502.
Bian, Y. Y.; Li, L.; Dong, M. M.; Liu, X. G.; Kaneko, T.; Cheng, K.; Liu, H. D.; Voss, C.; Cao, X.; Wang, Y. et al. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. Nat. Chem. Biol. 2016, 12, 959–966.
Larkin, J.; Ascierto, P. A.; Dreno, B.; Atkinson, V.; Liszkay, G.; Maio, M.; Mandala, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L. et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 2014, 371, 1867–1876.
Li, J. N.; Rix, U.; Fang, B.; Bai, Y.; Edwards, A.; Colinge, J.; Bennett, K. L.; Gao, J. C.; Song, L. X.; Eschrich, S. et al. A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat. Chem. Biol. 2010, 6, 291–299.
Jiang, P. L.; Wang, C.; Diehl, A.; Viner, R.; Etienne, C.; Nandhikonda, P.; Foster, L.; Bomgarden, R. D.; Liu, F. A membrane-permeable and immobilized metal affinity chromatography (IMAC) enrichable cross-linking reagent to advance in vivo cross-linking mass spectrometry. Angew. Chem., Int. Ed. 2022, 61, e202113937.
Dong, P. T.; Lin, H. N.; Huang, K. C.; Cheng, J. X. Label-free quantitation of glycated hemoglobin in single red blood cells by transient absorption microscopy and phasor analysis. Sci. Adv. 2019, 5, eaav0561.
Wang, B. C.; Xie, Z. H.; Ding, C. F.; Deng, C. H.; Yan, Y. H. Recent advances in metal oxide affinity chromatography materials for phosphoproteomics. TrAC Trends Anal. Chem. 2023, 158, 116881.
Leitner, A. Phosphopeptide enrichment using metal oxide affinity chromatography. TrAC Trends Anal. Chem. 2010, 29, 177–185.
Yıldırım, D.; Gökçal, B.; Büber, E.; Kip, Ç.; Demir, M. C.; Tuncel, A. A new nanozyme with peroxidase-like activity for simultaneous phosphoprotein isolation and detection based on metal oxide affinity chromatography: Monodisperse-porous cerium oxide microspheres. Chem. Eng. J. 2021, 403, 126357.
Pu, C. L.; Zhao, H. L.; Hong, Y. Y.; Wang, Z. X.; Zheng, Y.; Lan, M. B. Hierarchical dendritic mesoporous TiO2 nanocomposites for highly selective enrichment of endogenous phosphopeptides. ACS Sustain. Chem. Eng. 2021, 9, 5818–5826.
Wang, Z. G.; Lv, N.; Bi, W. Z.; Zhang, J. L.; Ni, J. Z. Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis. ACS Appl. Mater. Interfaces 2015, 7, 8377–8392.
Hong, Y. Y.; Pu, C. L.; Zhao, H. L.; Sheng, Q. Y.; Zhan, Q. L.; Lan, M. B. Yolk-shell magnetic mesoporous TiO2 microspheres with flowerlike NiO nanosheets for highly selective enrichment of phosphopeptides. Nanoscale 2017, 9, 16764–16772.
Li, W.; Liu, M. B.; Feng, S. S.; Li, X. M.; Wang, J. X.; Shen, D. K.; Li, Y. H.; Sun, Z. K.; Elzatahry, A. A.; Lu, H. J. et al. Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides. Mater. Horiz. 2014, 1, 439–445.
Gao, R. F.; Li, J.; Shi, R.; Zhang, Y.; Ouyang, F. Z.; Zhang, T.; Hu, L. H.; Xu, G. Q.; Liu, J. Highly sensitive detection of phosphopeptides with superparamagnetic Fe3O4@mZrO2 core-shell microspheres-assisted mass spectrometry. J. Mater. Sci. Technol. 2020, 59, 234–242.
He, X. M.; Zhu, G. T.; Li, X. S.; Yuan, B. F.; Shi, Z. G.; Feng, Y. Q. Rapid enrichment of phosphopeptides by SiO2-TiO2 composite fibers. Analyst 2013, 138, 5495–5502.
Nelson, C. A.; Szczech, J. R.; Xu, Q. G.; Lawrence, M. J.; Jin, S.; Ge, Y. Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. Chem. Commun. 2009, 6607–6609
Wang, H.; Duan, Y. K.; Zhong, W. W. ZrO2 nanofiber as a versatile tool for protein analysis. ACS Appl. Mater. Interfaces 2015, 7, 26414–26420.
Fang, G. Z.; Gao, W.; Deng, Q. L.; Qian, K.; Han, H. T.; Wang, S. Highly selective capture of phosphopeptides using a nano titanium dioxide-multiwalled carbon nanotube nanocomposite. Anal. Biochem. 2012, 423, 210–217.
Krenkova, J.; Moravkova, J.; Buk, J.; Foret, F. Phosphopeptide enrichment with inorganic nanofibers prepared by forcespinning technology. J. Chromatogr. A 2016, 1427, 8–15.
Li, D.; Xia, Y. N. Fabrication of titania nanofibers by electrospinning. Nano Lett. 2003, 3, 555–560.
Wang, R.; Shi, M. S.; Xu, F. Y.; Qiu, Y.; Zhang, P.; Shen, K. L.; Zhao, Q.; Yu, J. G.; Zhang, Y. F. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat. Commun. 2020, 11, 4465.
Kameoka, J.; Verbridge, S. S.; Liu, H. Q.; Czaplewski, D. A.; Craighead, H. G. Fabrication of suspended silica glass nanofibers from polymeric materials using a scanned electrospinning source. Nano Lett. 2004, 4, 2105–2108.
Yan, J. H.; Huang, Y. L.; Zhang, Y. Y.; Peng, W.; Xia, S. H.; Yu, J. Y.; Ding, B. Facile synthesis of bimetallic fluoride heterojunctions on defect-enriched porous carbon nanofibers for efficient ORR catalysts. Nano Lett. 2021, 21, 2618–2624.
Liao, Y. L.; Chen, W. K.; Li, S. Z.; Jiao, W. L.; Si, Y.; Yu, J. Y.; Ding, B. Ultrathin zirconium hydroxide nanosheet-assembled nanofibrous membranes for rapid degradation of chemical warfare agents. Small 2021, 17, 2101639.
Fu, M.; Zhang, J. M.; Jin, Y. M.; Zhao, Y.; Huang, S. Y.; Guo, C. F. A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers. Adv. Sci. 2020, 7, 2000258.
Tu, H.; Zhu, M. X.; Duan, B.; Zhang, L. N. Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 2021, 33, 2000682.
Hussain, D.; Naqvi, S. T. R.; Ashiq, M. N.; Najam-ul-Haq, M. Analytical sample preparation by electrospun solid phase microextraction sorbents. Talanta 2020, 208, 120413.
Mao, X.; Zhao, L.; Zhang, K.; Wang, Y. Y.; Ding, B. Highly flexible ceramic nanofibrous membranes for superior thermal insulation and fire retardancy. Nano Res. 2022, 15, 2592–2598.
Mao, X.; Hong, J.; Wu, Y. X.; Zhang, Q.; Liu, J.; Zhao, L.; Li, H. H.; Wang, Y. Y.; Zhang, K. An efficient strategy for reinforcing flexible ceramic membranes. Nano Lett. 2021, 21, 9419–9425.
Grierson, C.; Nielsen, E.; Ketelaarc, T.; Schiefelbein, J. Root hairs. Arabidopsis Book 2014, 12, e0172.
Sun, Z.; Cui, T. C.; Zhu, Y. C.; Zhang, W. S.; Shi, S. S.; Tang, S.; Du, Z. L.; Liu, C.; Cui, R. H.; Chen, H. J. et al. The mechanical principles behind the golden ratio distribution of veins in plant leaves. Sci. Rep. 2018, 8, 13859.
Ning, Q. J.; Zhang, L. Y.; Liu, C. Q.; Li, X.; Xu, C. G.; Hou, X. H. Boosting photogenerated carriers for organic pollutant degradation via in-situ constructing atom-to-atom TiO2/ZrTiO4 heterointerface. Ceram. Int. 2021, 47, 33298–33308.
Mullins, W. M.; Averbach, B. L. Bias-reference X-ray photoelectron spectroscopy of sapphire and yttrium aluminum garnet crystals. Surf. Sci. 1988, 206, 29–40.
Nakayama, N.; Hayashi, T. Preparation and characterization of TiO2-ZrO2 and thiol-acrylate resin nanocomposites with high refractive index via UV-induced crosslinking polymerization. Compos. Part A Appl. Sci. Manufac. 2007, 38, 1996–2004.
Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016, 11, 2301–2319.
Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R. A.; Olsen, J. V.; Mann, M. Andromeda: A peptide search engine integrated into the maxquant environment. J. Proteome Res. 2011, 10, 1794–1805.
Chandrashekar, D. S.; Bashel, B.; Balasubramanya, S. A. H.; Creighton, C. J.; Ponce-Rodriguez, I.; Chakravarthi, B. V. S. K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017, 19, 649–658
Ma, X. D.; Cai, G. Q.; Zou, W.; Huang, Y. H.; Zhang, J. R.; Wang, D. T.; Chen, B. L. First evidence for the contribution of the genetic variations of BRCA1-interacting protein 1 (BRIP1) to the genetic susceptibility of cervical cancer. Gene 2013, 524, 208–213.
Wang, J.; Wang, Y. M.; Shen, F. R.; Xu, Y. T.; Zhang, Y. H.; Zou, X. W.; Zhou, J. H.; Chen, Y. G. Maternal embryonic leucine zipper kinase: A novel biomarker and a potential therapeutic target of cervical cancer. Cancer Med. 2018, 7, 5665–5678.
Meng, Q.; Zhang, B. F.; Zhang, Y. M.; Wang, S. Y.; Zhu, X. H. Human bone marrow mesenchymal stem cell-derived extracellular vesicles impede the progression of cervical cancer via the miR-144-3p/CEP55 pathway. J. Cell. Mol. Med. 2021, 25, 1867–1883.
Yang, H. J.; Xue, J. M.; Li, J.; Wan, L. H.; Zhu, Y. X. Identification of key genes and pathways of diagnosis and prognosis in cervical cancer by bioinformatics analysis. Mol. Genet. Genom. Med. 2020, 8, e1200.
Zhao, Q. F.; Li, H. Y.; Zhu, L. Y.; Hu, S. P.; Xi, X. X.; Liu, Y. M.; Liu, J. F.; Zhong, T. Y. Bioinformatics analysis shows that TOP2A functions as a key candidate gene in the progression of cervical cancer. Biomed. Rep. 2020, 13, 21.
Lin, D.; Chen, T. S.; Xu, Y. F.; Li, T. X. CASC5 is elevated in lung adenocarcinoma and confers poor patient survival. Anal. Quant. Cytopathol. Histopathol. 2021, 43, 27–33.
Kang, T.; Yan, J. H.; Bao, H.; Zhang, L.; Nian, L.; Liu, N. N.; Duan, W.; Hu, H. F.; Liu, M.; Qiao, J. et al. Expression and clinical significance of TTK in cervical cancer. Int. J. Clin. Exp. Med. 2018, 11, 12133–12140.
Yu, B. W.; Chen, L.; Zhang, W. N.; Li, Y.; Zhang, Y. B.; Gao, Y.; Teng, X. L.; Zou, L. B.; Wang, Q.; Jia, H. T. et al. TOP2A and CENPF are synergistic master regulators activated in cervical cancer. BMC Med. Genomics 2020, 13, 145
Chen, H.; Wang, X.; Jia, H. H.; Tao, Y.; Zhou, H.; Wang, M. Y.; Wang, X.; Fang, X. L. Bioinformatics analysis of key genes and pathways of cervical cancer. OncoTargets Ther. 2020, 13, 13275–13283.
Zong, S.; Liu, X. X.; Zhou, N.; Yue, Y. E2F7, EREG, miR-451a and miR-106b-5p are associated with the cervical cancer development. Arch. Gynecol. Obstet. 2019, 299, 1089–1098.
Zhang, M.; He, S. F.; Ma, X.; Ye, Y.; Wang, G. Y.; Zhuang, J. H.; Song, Y. N.; Xia, W. GINS2 affects cell viability, cell apoptosis, and cell cycle progression of pancreatic cancer cells via MAPK/ERK pathway. J. Cancer 2020, 11, 4662–4670