AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mn single-atoms decorated CNT electrodes for high-performance supercapacitors

Qian Rong1Chao Yuwen2Yingkai Liu1( )Yuanrong Liu1Chunyang Wang3Yang Wang4Ding Zhang4( )Zhen Wen5( )
Yunnan Key Laboratory of Opto-Electronic Information Technology, Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
Show Author Information

Graphical Abstract

The integration of Mn atoms into the carbon nanotube (CNT) can enhance the charge transport capacity and the number of polar active sites of Mn-CNT and then facilitate chemical interactions between Mn-CNT and OH, which thereby significantly improve the capacity and long-cycle stability of supercapacitors.

Abstract

Developing highly robust and efficient electrode materials is of critical importance to promoting the energy density of current supercapacitors for commercialization. Herein, we report an efficient catalyst with monodispersed Mn single-atoms embedded in carbon nanotubes (Mn-CNTs) for enhancing the electrode performance of supercapacitors. A high specific capacitance (1523.6 F·g−1 at 1.0 A·g−1) can be achieved, which is about twice as high as the specific capacitance of the electrode material without the introduction of Mn single-atoms. Remarkably, the asymmetric electrochemical capacitor created with Mn-CNT and activated carbon exhibits a high energy density of 180.8 Wh·kg−1 at a power density of 1.4 kW·kg−1, much higher than most reported results. The study shows that the integration of Mn atoms into the CNT can enhance the charge transport capacity and the number of polar active sites of Mn-CNT and then facilitate chemical interactions between Mn-CNT and OH. This work provides a novel strategy to enable high-energy storage in supercapacitors by introducing single-atoms into carbon nanotubes to improve electrodes’ energy density and cycle life.

Electronic Supplementary Material

Download File(s)
12274_2023_6279_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Lukatskaya, M. R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647.

[2]

Gielen, D.; Boshell, F.; Saygin, D. Climate and energy challenges for materials science. Nat. Mater. 2016, 15, 117–120.

[3]

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

[4]

Zhang, C.; Lv, W.; Tao, Y.; Yang, Q. H. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage. Energy Environ. Sci., 2015, 8, 1390–1403.

[5]

Zhao, G. Y.; Chen, C.; Yu, D. F.; Sun, L.; Yang, C. H.; Zhang, H.; Sun, Y.; Besenbacher, F.; Yu, M. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 2018, 47, 547–555.

[6]

Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564.

[7]

Kumar, K. S.; Choudhary, N.; Jung, Y.; Thomas, J. Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett. 2018, 3, 482–495.

[8]

Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

[9]

Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567.

[10]

Cui, C. X.; Gao, Y.; Li, J.; Yang, C.; Liu, M.; Jin, H. L.; Xia, Z. H.; Dai, L. M.; Lei, Y.; Wang, J. C. et al. Origins of boosted charge storage on heteroatom-doped carbons. Angew. Chem. 2020, 132, 8002–8007.

[11]

Liu, P.; Cai, W. Q.; Chen, J. W.; Yang, Z. C.; Zhou, J. P.; Cai, Z. J.; Fan, J. J. One-pot hydrothermal preparation of manganese-doped carbon microspheres for effective deep removal of hexavalent chromium from wastewater. J. Colloid Interface Sci. 2021, 599, 427–435.

[12]

Kang, S.; Han, H. S.; Mhin, S.; Chae, H. R.; Kim, W. R.; Kim, K. M. Ni-doped carbon nanotubes fabricated by pulsed laser ablation in liquid as efficient electrocatalysts for oxygen evolution reaction. Appl. Surf. Sci. 2021, 547, 149197.

[13]

Chen, X.; Chen, D.; Li, G. F.; Gong, C.; Chen, Y. J.; Zhang, Q.; Sui, J.; Dong, H. Z.; Yu, J. H.; Yu, L. Y. et al. A hierarchical architecture of Fe/Co/Ni-doped carbon nanotubes/nanospheres grafted on graphene as advanced bifunctional electrocatalyst for Zn-Air batteries. J. Alloys Compd. 2021, 873, 159833.

[14]

Wang, T.; Chen, H. C.; Yu, F.; Zhao, X. S.; Wang, H. X. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 2019, 16, 545–573.

[15]

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

[16]

Zhang, M. T.; Li, H.; Chen, J. X.; Ma, F. X.; Zhen, L.; Wen, Z. H.; Xu, C. Y. Transition metal (Co, Ni, Fe, Cu) single-atom catalysts anchored on 3D nitrogen-doped porous carbon nanosheets as efficient oxygen reduction electrocatalysts for Zn-air battery. Small 2022, 34, 2202476.

[17]

Qiao, S. M.; Lei, D.; Wang, Q.; Shi, X. S.; Zhang, Q.; Huang, C. H.; Liu, A. M.; He, G. H.; Zhang, F. X. Etch-evaporation enabled defect engineering to prepare high-loading Mn single atom catalyst for Li-S battery applications. Chem. Eng. J. 2022, 442, 136258.

[18]

Jin, Y.; Zou, L. F.; Liu, L. L.; Engelhard, M. H.; Patel, R. L.; Nie, Z. M.; Han, K. S.; Shao, Y. Y.; Wang, C. M.; Zhu, J. et al. Joint charge storage for high-rate aqueous zinc-manganese dioxide batteries. Adv. Mater. 2019, 31, 1900567.

[19]

Zhao, B. T.; Zhang, L.; Zhang, Q. B.; Chen, D. C.; Cheng, Y.; Deng, X.; Chen, Y.; Murphy, R.; Xiong, X. H.; Song, B. et al. Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mat. 2018, 8, 1702247.

[20]

Cheng, X. B.; Tian, G. L.; Liu, X. F.; Nie, J. Q.; Zhao, M. Q.; Huang, J. Q.; Zhu, W. C.; Hu, L.; Zhang, Q.; Wei, F. Robust growth of herringbone carbon nanofibers on layered double hydroxide derived catalysts and their applications as anodes for Li-ion batteries. Carbon 2013, 62, 393–404.

[21]
Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012 , 5, 6717–6731.
[22]

Jia, H. N.; Lin, J. H.; Liu, Y. L.; Chen, S. L.; Cai, Y. F.; Qi, J. L.; Feng, J. C.; Fei, W. D. Nanosized core–shell structured graphene-MnO2 nanosheet arrays as stable electrodes for superior supercapacitors. J. Mater. Chem. A 2017, 5, 10678–10686.

[23]

Yang, Z. K.; Wang, X. L.; Zhu, M. Z.; Leng, X. Y.; Chen, W. X.; Wang, W. Y.; Xu, Q.; Yang, L. M.; Wu, Y. E. Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance. Nano Res. 2021, 14, 4512–4519.

[24]

Zhou, H.; Zhao, Y. F.; Gan, J.; Xu, J.; Wang, Y.; Lv, H. W.; Fang, S.; Wang, Z. Y.; Deng, Z. L.; Wang, X. Q. et al. Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. J. Am. Chem. Soc. 2020, 142, 12643–12650.

[25]

Zhang, Y.; Deng, S. J.; Luo, M.; Pan, G. X.; Zeng, Y. X.; Lu, X. H.; Ai, C. Z.; Liu, Q.; Xiong, Q. Q.; Wang, X. L. et al. Defect promoted capacity and durability of N-MnO2− x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries. Small 2019, 15, 1905452.

[26]

Gao, W. J.; Wan, Y.; Dou, Y. Q.; Zhao, D. Y. Synthesis of partially graphitic ordered mesoporous carbons with high surface areas. Adv. Energy Mater. 2011, 1, 115–123.

[27]

Kumar, S.; Riyajuddin, S.; Afshan, M.; Aziz, S. T.; Maruyama, T.; Ghosh, K. In situ growth of urchin manganese sulfide anchored three-dimensional graphene (γ-MnS@3DG) on carbon cloth as a flexible asymmetric supercapacitor. J. Phys. Chem. Lett. 2021, 12, 6574–6581.

[28]

Messaoudi, B.; Joiret, S.; Keddam, M.; Takenouti, H. Anodic behaviour of manganese in alkaline medium. Electrochim. Acta 2001, 46, 2487–2498.

[29]

Zhou, D.; Wang, Z.; Long, X.; An, Y. M.; Lin, H.; Xing, Z.; Ma, M.; Yang, S. H. One-pot synthesis of manganese oxides and cobalt phosphides nanohybrids with abundant heterointerfaces in an amorphous matrix for efficient hydrogen evolution in alkaline solution. J. Mater. Chem. A 2019, 7, 22530–22538.

[30]

Lee, S. W.; Kim, J.; Chen, S.; Hammond, P. T.; Shao-Horn, Y. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 2010, 4, 3889–3896.

[31]

Cai, Z. Y.; Zhang, F.; Wei, D. Y.; Zhai, B.; Wang, X. Y.; Song, Y. Ni x Co1− x S2@N-doped carbon composites for supercapacitor electrodes. J. Energy Storage 2023, 72, 108231.

[32]

Chen, B. L.; Wu, D. L.; Wang, T.; Yuan, F.; Jia, D. Z. Rapid preparation of porous carbon by flame burning carbonization method for supercapacitor. Chem. Eng. J. 2023, 462, 142163.

[33]

Zhang, A. Q.; Zhao, R.; Hu, L. Y.; Yang, R.; Yao, S. Y.; Wang, S. Y.; Yang, Z. Y.; Yan, Y. M. Adjusting the coordination environment of Mn enhances supercapacitor performance of MnO2. Adv. Energy Mater. 2021, 11, 2101412.

[34]

Koudahi, M. F.; Frąckowiak, E. Fast response supercapacitor based on carbon-VS2 electrodes with a wide operating voltage range. Energy Storage Mater. 2022, 49, 255–267.

[35]

Li, H. Z.; Du, T. Y.; Wang, Q.; Guo, J. Y.; Zhang, S. Y.; Lu, Y. A new synthesis of O/N-doped porous carbon material for supercapacitors. J. Energy Storage 2023, 66, 107397.

[36]

Arjunan, A.; Ramasamy, S.; Kim, J.; Kim, S. K. Co3O4 nanoparticles-embedded nitrogen-doped porous carbon spheres for high-energy hybrid supercapacitor electrodes. J. Energy Storage 2023, 68, 107758.

[37]

Qiu, Z. P.; Liu, Z.; Wang, G. W.; Huangfu, C.; Li, Z. Y.; Yan, Y. C.; Chi, C. L.; Gao, P. F.; Lu, X. L.; Zhang, S. et al. Highly redox-active oligomers between graphene sheets as ultrahigh capacitance/rate and stable electrodes for supercapacitors. Energy Storage Mater. 2023, 60, 102824.

[38]

Zhang, J. C.; Luo, J. W.; Guo, Z. X.; Liu, Z. D.; Duan, C. P.; Dou, S. M.; Yuan, Q. Y.; Liu, P.; Ji, K. M.; Zeng, C. H. et al. Ultrafast manufacturing of ultrafine structure to achieve an energy density of over 120 Wh·kg−1 in supercapacitors. Adv. Energy Mater. 2023, 13, 2203061.

[39]

Anwer, A. H.; Shoeb, M.; Mashkoor, F.; Ali, A.; Kareem, S.; Ansari, M. Z.; Park, J. M.; Jeong, C. Simultaneous reduction of carbon dioxide and energy harvesting using RGO-based SiO2-TiO2 nanocomposite for supercapacitor and microbial electrosynthesis. Appl. Catal. B: Environ. 2023, 339, 123091.

[40]
Vadiyar, M. M.; Kim, J. Y.; Bae, J. H.; Nam, K. W. Imidazole linker-induced covalent triazine framework-ZIF hybrids for confined hollow carbon super-heterostructures toward a long-life supercapacitor. Carbon Energy, in press, DOI: 10.1002/cey2.344.
[41]

Fu, M.; Chen, W.; Lei, Y.; Yu, H.; Lin, Y. X.; Terrones, M. Biomimetic construction of ferrite quantum dot/graphene heterostructure for enhancing ion/charge transfer in supercapacitors. Adv. Mater. 2023, 35, 2300940.

[42]

Huang, J.; Liu, C.; Jin, Y. Z.; Chen, J. C. Hierarchical porous carbon synthesis by carbonized polymer dots-based sacrificial template for high-performance supercapacitors. Chem. Eng. J. 2023, 461, 141930.

[43]

Nguyen, T. B.; Yoon, B.; Nguyen, T. D.; Oh, E.; Ma, Y. F.; Wang, M.; Suhr, J. A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications. Carbon 2023, 206, 383–391.

Nano Research
Pages 4039-4046
Cite this article:
Rong Q, Yuwen C, Liu Y, et al. Mn single-atoms decorated CNT electrodes for high-performance supercapacitors. Nano Research, 2024, 17(5): 4039-4046. https://doi.org/10.1007/s12274-023-6279-5
Topics:

740

Views

3

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 28 June 2023
Revised: 06 October 2023
Accepted: 19 October 2023
Published: 22 November 2023
© Tsinghua University Press 2023
Return