AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhancing alkyne semi-hydrogenation through engineering metal–support interactions of Pd on oxides

Yuefeng Wu1Xiaotong Lu1Pengfei Cui1Wenyu Jia1Jun Zhou2Yuan Wang1Hussain Zahid1Yuxin Wu3Muhammad Umer Rafique1Xiong Yin1Baoshan Li1Leyu Wang1Guolei Xiang1( )
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

Using phenylacetylene semi-hydrogenation as a model reaction, here we explore the optimization approaches toward better Pd catalysts for alkyne semi-hydrogenation through investigating support effect and metal–support interactions.

Abstract

Supported Pd catalysts show superior activities for olefin productions from alkynes through semi-hydrogenation reactions, but over-hydrogenation into alkanes highly decreases olefin selectivity. Using phenylacetylene semi-hydrogenation as a model reaction, here we explore the optimization approaches toward better Pd catalysts for alkyne semi-hydrogenation through investigating support effect and metal–support interactions. The results show that the states of Pd with supports can be tuned by varying oxide reducibility, loading ratios, and post-treatments. In our system, 0.06 wt.% Pd on rutile-TiO2 nanorods shows the highest activity owing to the synergistic effects of single-atoms and clusters. Support reducibility can change the filling degrees of Pd 4d orbitals through varying interfacial bonding strengths, which further affect catalytic activity and selectivity.

Electronic Supplementary Material

Download File(s)
12274_2023_6280_MOESM1_ESM.pdf (893.3 KB)

References

[1]

Zhao, L. M.; Qin, X. T.; Zhang, X. R.; Cai, X. B.; Huang, F.; Jia, Z. M.; Diao, J. Y.; Xiao, D. Q.; Jiang, Z.; Lu, R. F. et al. A magnetically separable Pd single-atom catalyst for efficient selective hydrogenation of phenylacetylene. Adv. Mater. 2022, 34, 2110455.

[2]

Hossain, M. M.; Atanda, L.; Al-Yassir, N.; Al-Khattaf, S. Kinetics modeling of ethylbenzene dehydrogenation to styrene over a mesoporous alumina supported iron catalyst. Chem. Eng. J. 2012, 207–208, 308–321

[3]

Hu, J. W.; Zhou, Z. M.; Zhang, R.; Li, L.; Cheng, Z. M. Selective hydrogenation of phenylacetylene over a nano-Pd/α-Al2O3 catalyst. J. Mol. Catal. A Chem. 2014, 381, 61–69.

[4]

Wang, Z.; Luo, Q.; Mao, S. J.; Wang, C. P.; Xiong, J. Q.; Chen, Z. R.; Wang, Y. Fundamental aspects of alkyne semi-hydrogenation over heterogeneous catalysts. Nano Res. 2022, 15, 10044–10062.

[5]

Yu, W. Z.; Xin, Z. L.; Niu, S.; Lin, T. W.; Guo, W. Y.; Xie, Y. N.; Wu, Y. F.; Ji, X. B.; Shao, L. D. Nanosized palladium on phosphorus-incorporated porous carbon frameworks for enhanced selective phenylacetylene hydrogenation. Catal. Sci. Technol. 2017, 7, 4934–4939.

[6]

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

[7]

Huang, F.; Jia, Z. M.; Diao, J. Y.; Yuan, H.; Su, D. S.; Liu, H. Y. Palladium nanoclusters immobilized on defective nanodiamond-graphene core–shell supports for semihydrogenation of phenylacetylene. J. Energy. Chem. 2019, 33, 31–36.

[8]

Zhang, R.; Liu, Z. L.; Zheng, S. H.; Wang, L. Q.; Zhang, L.; Qiao, Z. A. Pyridinic nitrogen sites dominated coordinative engineering of subnanometric Pd clusters for efficient alkynes’ semihydrogenation. Adv. Mater. 2023, 35, 2209635.

[9]

Wang, Z. Q.; Yang, L.; Zhang, R.; Li, L.; Cheng, Z. M.; Zhou, Z. M. Selective hydrogenation of phenylacetylene over bimetallic Pd-Cu/Al2O3 and Pd-Zn/Al2O3 catalysts. Catal. Today 2016, 264, 37–43.

[10]

Yang, L.; Jin, Y. Z.; Fang, X. C.; Cheng, Z. M.; Zhou, Z. M. Magnetically recyclable core–shell structured Pd-based catalysts for semihydrogenation of phenylacetylene. Ind. Eng. Chem. Res. 2017, 56, 14182–14191.

[11]

Li, J. H.; Yu, Z. W.; Li, J. Q.; Fan, Y. L.; Gao, Z.; Xiong, J. B.; Wang, L.; Tao, Y.; Yang, L. X.; Xiao, Y. X. et al. Constructing PtI@COF for semi-hydrogenation reactions of phenylacetylene. J. Solid State Chem. 2020, 285, 121176.

[12]

Li, L. Y.; Yang, W. J.; Yang, Q. H.; Guan, Q. Q.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Accelerating chemo- and regioselective hydrogenation of alkynes over bimetallic nanoparticles in a metal–organic framework. ACS Catal. 2020, 10, 7753–7762.

[13]

Lv, H.; Qin, H. Y.; Sun, M. Z.; Jia, F. R.; Huang, B. L.; Liu, B. Mesoporosity-enabled selectivity of mesoporous palladium-based nanocrystals catalysts in semihydrogenation of alkynes. Angew. Chem., Int. Ed. 2022, 61, e202114539.

[14]

Gao, R. J.; Xu, J. S.; Wang, J.; Lim, J.; Peng, C.; Pan, L.; Zhang, X. W.; Yang, H. M.; Zou, J. J. Pd/Fe2O3 with electronic coupling single-site Pd–Fe pair sites for low-temperature semihydrogenation of alkynes. J. Am. Chem. Soc. 2022, 144, 573–581.

[15]

Shen, C. Q.; Ji, Y. J.; Wang, P. T.; Bai, S. X.; Wang, M.; Li, Y. Y.; Huang, X. Q.; Shao, Q. Interface confinement in metal nanosheet for high-efficiency semi-hydrogenation of alkynes. ACS Catal. 2021, 11, 5231–5239.

[16]

Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86–89.

[17]

Wu, L. Z.; Chu, M. Y.; Gong, J.; Cao, M. H.; Liu, Y.; Xu, Y. Regulation of surface carbides on palladium nanocubes with zeolitic imidazolate frameworks for propyne selective hydrogenation. Nano Res. 2021, 14, 1559–1564.

[18]

Song, X.; Shao, F. J.; Zhao, Z. J.; Li, X. N.; Wei, Z. Z.; Wang, J. G. Single-atom Ni-modified Al2O3-supported Pd for mild-temperature semi-hydrogenation of alkynes. ACS Catal. 2022, 12, 14846–14855.

[19]

Yuan, Z. J.; Liu, L.; Ru, W.; Zhou, D. J.; Kuang, Y.; Feng, J. T.; Liu, B.; Sun, X. M. 3D printed hierarchical spinel monolithic catalysts for highly efficient semi-hydrogenation of acetylene. Nano Res. 2022, 15, 6010–6018

[20]

Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X. L.; Yang, X. F.; Wang, X. D.; Tai, Z. J. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 2015, 5, 3717–3725.

[21]

Bridier, B.; López, N.; Pérez-Ramírez, J. Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Trans. 2010, 39, 8412–8419.

[22]

McCue, A. J.; Guerrero-Ruiz, A.; Ramirez-Barria, C.; Rodríguez-Ramos, I.; Anderson, J. A. Selective hydrogenation of mixed alkyne/alkene streams at elevated pressure over a palladium sulfide catalyst. J. Catal. 2017, 355, 40–52.

[23]

Osswald, J.; Giedigkeit, R.; Jentoft, R.; Armbruster, M.; Girgsdies, F.; Kovnir, K.; Ressler, T.; Grin, Y.; Schlogl, R. Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylene: Part I: Preparation and structural investigation under reaction conditions. J. Catal. 2008, 258, 210–218.

[24]

Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 2016, 6, 1054–1061.

[25]

Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Li, L.; Huang, Y. Q.; Zhang, T.; Lee, J. W.; Jang, B. W. L.; Mou, C. Y. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J. Chem. 2014, 38, 2043–2051.

[26]

Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500.

[27]

Zhang, W. J.; Qin, R. X.; Fu, G.; Zheng, N. F. Hydrogen bond network induced by surface ligands shifts the semi-hydrogenation selectivity over palladium catalysts. J. Am. Chem. Soc. 2023, 145, 10178–10186.

[28]

Guo, Y. L.; Li, Y. Y.; Du, X. R.; Li, L.; Jiang, Q. K.; Qiao, B. T. Pd single-atom catalysts derived from strong metal–support interaction for selective hydrogenation of acetylene. Nano Res. 2022, 15, 10037–10043.

[29]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[30]

Zhou, J.; Gao, Z.; Xiang, G. L.; Zhai, T. Y.; Liu, Z. K.; Zhao, W. X.; Liang, X.; Wang, L. Y. Interfacial compatibility critically controls Ru/TiO2 metal–support interaction modes in CO2 hydrogenation. Nat. Commun. 2022, 13, 327.

[31]

Macino, M.; Barnes, A. J.; Althahban, S. M.; Qu, R. Y.; Gibson, E. K.; Morgan, D. J.; Freakley, S. J.; Dimitratos, N.; Kiely, C. J.; Gao, X. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2019, 2, 873–881.

[32]

Liu, K. L.; Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Zhang, Q. H.; Jing, W. T.; Ruan, P. P.; Gu, L.; Fu, G.; Zheng, N. F. Cu2O-supported atomically dispersed Pd catalysts for semihydrogenation of terminal alkynes: Critical role of oxide supports. CCS Chem. 2019, 1, 207–214.

[33]

Shen, Q. K.; Jin, H. Q.; Li, P. P.; Yu, X. H.; Zheng, L. R.; Song, W. G.; Cao, C. Y. Breaking the activity limitation of iridium single-atom catalyst in hydrogenation of quinoline with synergistic nanoparticles catalysis. Nano Res. 2022, 15, 5024–5031.

[34]

Han, L. L.; Cheng, H.; Liu, W.; Li, H. Q.; Ou, P. F.; Lin, R. Q.; Wang, H. T.; Pao, C. W.; Head, A. R.; Wang, C. H. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 2022, 21, 681–688.

[35]

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal–organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

[36]

Li, Z. J.; Ren, Q. H.; Wang, X. X.; Chen, W. X.; Leng, L. P.; Zhang, M. Y.; Horton, J. H.; Liu, B.; Xu, Q.; Wu, W. et al. Highly active and stable palladium single-atom catalyst achieved by a thermal atomization strategy on an SBA-15 molecular sieve for semi-hydrogenation reactions. ACS Appl. Mater. Interfaces 2021, 13, 2530–2537.

[37]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[38]

Guan, H. L.; Lin, J.; Qiao, B. T.; Yang, X. F.; Li, L.; Miao, S.; Liu, J. Y.; Wang, A. Q.; Wang, X. D.; Zhang, T. Catalytically active Rh sub-nanoclusters on TiO2 for CO oxidation at cryogenic temperatures. Angew. Chem., Int. Ed. 2016, 55, 2820–2824.

[39]

Hu, B. T.; Sun, K. A.; Zhuang, Z. W.; Chen, Z.; Liu, S. J.; Cheong, W. C.; Chen, C.; Hu, M. Z.; Cao, X.; Ma, J. G. et al. Distinct crystal-facet-dependent behaviors for single-atom palladium-on-ceria catalysts: Enhanced stabilization and catalytic properties. Adv. Mater. 2022, 34, e2107721.

[40]

Yu, C.; Fu, J. J.; Muzzio, M.; Shen, T. L.; Su, D.; Zhu, J. J.; Sun, S. H. CuNi nanoparticles assembled on graphene for catalytic methanolysis of ammonia borane and hydrogenation of nitro/nitrile compounds. Chem. Mater. 2017, 29, 1413–1418.

[41]

Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

[42]

Dong, C. Y.; Gao, Z. R.; Li, Y. L.; Peng, M.; Wang, M.; Xu, Y.; Li, C. Y.; Xu, M.; Deng, Y. C.; Qin, X. T. et al. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nat. Catal. 2022, 5, 485–493.

[43]

Riley, C.; Zhou, S. L.; Kunwar, D.; De La Riva, A.; Peterson, E.; Payne, R.; Gao, L. Y.; Lin, S.; Guo, H.; Datye, A. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. J. Am. Chem. Soc. 2018, 140, 12964–12973.

[44]

Li, Z. X.; Hu, M. L.; Liu, J. H.; Wang, W. W.; Li, Y. J.; Fan, W. B.; Gong, Y. X.; Yao, J. S.; Wang, P.; He, M. et al. Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site. Nano Res. 2022, 15, 1983–1992.

[45]

Luo, Q.; Wang, Z.; Chen, Y. Z.; Mao, S. J.; Wu, K. J.; Zhang, K. C.; Li, Q. C.; Lv, G. F.; Huang, G. D.; Li, H. R. et al. Dynamic modification of palladium catalysts with chain alkylamines for the selective hydrogenation of alkynes. ACS Appl. Mater. Interfaces 2021, 13, 31775–31784.

[46]

Ma, Y. F.; Chi, B. L.; Liu, W.; Cao, L. N.; Lin, Y.; Zhang, X. H.; Ye, X. X.; Wei, S. Q.; Lu, J. L. Tailoring of the proximity of platinum single atoms on CeO2 using phosphorus boosts the hydrogenation activity. ACS Catal. 2019, 9, 8404–8412.

[47]

Nikolaev, S. A.; Krotova, I. N. Partial hydrogenation of phenylacetylene over gold- and palladium-containing catalysts. Petrol. Chem. 2013, 53, 394–400.

[48]

Gao, Z.; Wang, G. F.; Lei, T. Y.; Lv, Z. X.; Xiong, M.; Wang, L. C.; Xing, S. F.; Ma, J. Y.; Jiang, Z.; Qin, Y. Enhanced hydrogen generation by reverse spillover effects over bicomponent catalysts. Nat. Commun. 2022, 13, 118.

[49]

Xiong, M.; Gao, Z.; Qin, Y. Spillover in heterogeneous catalysis: New insights and opportunities. ACS Catal. 2021, 11, 3159–3172.

[50]

Prins, R. Hydrogen spillover. Facts and fiction. Chem. Rev. 2012, 112, 2714–2738.

[51]

Liu, Z. L.; Handa, K.; Kaibuchi, K.; Tanaka, Y.; Kawai, J. The charge transfer effect in Pd compounds(II): Evidence from the L3 X-ray absorption near edge structure spectroscopy. Spectrochim. Acta Part B Atom. Spectrosc. 2004, 59, 901–904.

[52]

Benfatto, M.; Bianconi, A.; Davoli, I.; Incoccia, L.; Mobilio, S.; Stizza, S. Role of multielectron excitations in the L3 XANES of Pd. Solid State Commun. 1983, 46, 367–370.

[53]

Huang, D. C.; Chang, K. H.; Pong, W. F.; Tseng, P. K.; Hung, K. J.; Huang, W. F. Effect of Ag-promotion on Pd catalysts by XANES. Catal. Lett. 1998, 53, 155–159.

[54]

Shimizu, K. I.; Kamiya, Y.; Osaki, K.; Yoshida, H.; Satsuma, A. The average Pd oxidation state in Pd/SiO2 quantified by L3-edge XANES analysis and its effects on catalytic activity for CO oxidation. Catal. Sci. Technol. 2012, 2, 767–772.

Nano Research
Pages 3707-3713
Cite this article:
Wu Y, Lu X, Cui P, et al. Enhancing alkyne semi-hydrogenation through engineering metal–support interactions of Pd on oxides. Nano Research, 2024, 17(5): 3707-3713. https://doi.org/10.1007/s12274-023-6280-z
Topics:
Part of a topical collection:

1014

Views

3

Crossref

2

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 15 September 2023
Revised: 16 October 2023
Accepted: 19 October 2023
Published: 14 December 2023
© Tsinghua University Press 2023
Return