AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mechanism investigation of A-site doping on modulating electronic band structure and photocatalytic performance towards CO2 reduction of LaFeO3 perovskite

Chi Cao1Jinshuo Li1Yang Hu1Lin Zhang2Wensheng Yang1,2( )
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
Show Author Information

Graphical Abstract

By combining experimental and theoretical investigations, the effect of A-site doping on electronic band structure, behavior of the photogenerated charge carriers, and photocatalytic activity of LaFeO3 was revealed, providing new insights for rational design of electronically optimized perovskite-type photocatalysts at the atomic level.

Abstract

Three kinds of metal atoms with different valence electronic configurations, Bi (6s26p3), Y (4d15s2), and Ce (4f15d16s2), were selected to investigate the effect of A-site (La3+) doping on electronic band structure, photoelectric properties, and photocatalytic performance of LaFeO3 perovskite. It was identified that the Bi doped LaFeO3 presented significantly improved photocatalytic activity towards the reduction of CO2, while the Y or Ce doped LaFeO3 displayed decreased photocatalytic activity compared to the pristine LaFeO3. It was revealed that doping of all the three metal atoms resulted in narrowed band gap and thus extended light absorption of LaFeO3 by lowering its conduction band minimum (CBM). The recombination rate and mobility of the charge carriers were represented by the relative effective mass (D) between holes and electrons for pristine and A-site doped LaFeO3. The doping of Bi resulted in increased D value, attributed to the Bi 6s electron states at the valence band maximum (VBM), and thus promoted separation and transfer of the charge carriers and improved photocatalytic activity of LaFeO3. In contrast, the doping of Ce resulted in significantly decreased D value, induced by the highly localized Ce 4f hole states at the CBM, and thus higher recombination rate of the charge carriers and decreased photocatalytic activity of LaFeO3. Furthermore, the Y doped LaFeO3 with a slightly decreased D value presented slightly increased recombination rate of the charge carriers and thus decreased photocatalytic activity. Such a work provides new insights into the A-site doping in LaFeO3 perovskite, which should be helpful for optimizing the electronic band structure and activity of perovskite-type photocatalysts at atomic level.

Electronic Supplementary Material

Download File(s)
12274_2023_6285_MOESM1_ESM.pdf (2.8 MB)

References

[1]

Garcia-Muñoz, P.; Fresno, F.; Lefevre, C.; Robert, D.; Keller, N. Highly robust La1− x Ti x FeO3 dual catalyst with combined photocatalytic and photo-CWPO activity under visible light for 4-chlorophenol removal in water. Appl. Catal. B Environ. 2020, 262, 118310.

[2]

Zhang, Q.; Huang, Y.; Peng, S. Q.; Zhang, Y. F.; Shen, Z. X.; Cao, J. J.; Ho, W.; Lee, S. C.; Pui, D. Y. H. Perovskite LaFeO3-SrTiO3 composite for synergistically enhanced NO removal under visible light excitation. Appl. Catal. B Environ. 2017, 204, 346–357.

[3]

Pawar, G. S.; Elikkottil, A.; Seetha, S.; Reddy, K. S.; Pesala, B.; Tahir, A. A.; Mallick, T. K. Enhanced photoactivity and hydrogen generation of LaFeO3 photocathode by plasmonic silver nanoparticle incorporation. ACS Appl. Energy Mater. 2018, 1, 3449–3456.

[4]

Khan, I.; Sun, N.; Zhang, Z. Q.; Li, Z. J.; Humayun, M.; Ali, S.; Qu, Y.; Jing, L. Q. Improved visible-light photoactivities of porous LaFeO3 by coupling with nanosized alkaline earth metal oxides and mechanism insight. Catal. Sci. Technol. 2019, 9, 3149–3157.

[5]

Zhu, Z.; Peelaers, H.; Van De Walle, C. G. Electronic and protonic conduction in LaFeO3. J. Mater. Chem. A 2017, 5, 15367–15379.

[6]

Wang, H. P.; Wang, J.; Pi, Y. C.; Shao, Q.; Tan, Y. M.; Huang, X. Q. Double perovskite LaFe x Ni1− x O3 nanorods enable efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 2316–2320.

[7]

Shi, Z. J.; Li, H. B.; Zhang, L. X.; Cao, Y. A. Improved photocatalytic activity of LaFeO3 with doping Mn3+ ions and modifying Pd2+ ions for photoreduction of CO2 into CH4. J. Power Sources 2022, 519, 230738.

[8]

Gao, Y. Q.; Yang, G. Q.; Dai, Y. J.; Li, X. L.; Gao, J. F.; Li, N.; Qiu, P.; Ge, L. Electrodeposited co-substituted LaFeO3 for enhancing the photoelectrochemical activity of BiVO4. ACS Appl. Mater. Interfaces 2020, 12, 17364–17375.

[9]

Iervolino, G.; Vaiano, V.; Sannino, D.; Rizzo, L.; Palma, V. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Appl. Catal. B Environ. 2017, 207, 182–194.

[10]

Li, H. Y.; Chen, Y. B.; Xi, S. B.; Wang, J. X.; Sun, S. N.; Sun, Y. M.; Du, Y. H.; Xu, Z. J. Degree of geometric tilting determines the activity of FeO6 octahedra for water oxidation. Chem. Mater. 2018, 30, 4313–4320.

[11]

Zhang, L.; Xu, T. H.; Guo, Q. Y.; Ling, Z.; Zou, R. J.; Wu, Q. Enhanced photocatalytic efficiencies over A- or B-sites substituted LaFeO3/silica fiber composites. J. Phys. Chem. Solids 2017, 110, 136–144.

[12]

Sun, X.; Tiwari, D.; Fermin, D. J. Promoting active electronic states in LaFeO3 thin-films photocathodes via alkaline-earth metal substitution. ACS Appl. Mater. Interfaces 2020, 12, 31486–31495.

[13]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[14]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[15]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[16]

Wheeler, G. P.; Baltazar, V. U.; Smart, T. J.; Radmilovic, A.; Ping, Y.; Choi, K. S. Combined theoretical and experimental investigations of atomic doping to enhance photon absorption and carrier transport of LaFeO3 photocathodes. Chem. Mater. 2019, 31, 5890–5899.

[17]

Taylor, F. H.; Buckeridge, J.; Catlow, C. R. A. Screening divalent metals for A- and B-site dopants in LaFeO3. Chem. Mater. 2017, 29, 8147–8157.

[18]

Dronskowski, R.; Bloechl, P. E. Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617–8624.

[19]

Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461–5466.

[20]

Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 2013, 34, 2557–2567.

[21]

Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035.

[22]

Jiang, B.; Li, L.; Zhang, Q.; Ma, J.; Zhang, H. T.; Yu, K. W.; Bian, Z. F.; Zhang, X. L.; Ma, X. H.; Tang, D. W. Iron-oxygen covalency in perovskites to dominate syngas yield in chemical looping partial oxidation. J. Mater. Chem. A 2021, 9, 13008–13018.

[23]

Cao, E. S.; Wu, A. T.; Wang, H. H.; Zhang, Y. J.; Hao, W. T.; Sun, L. Enhanced ethanol sensing performance of Au and Cl comodified LaFeO3 nanoparticles. ACS Appl. Nano Mater. 2019, 2, 1541–1551.

[24]

Wang, Y. L.; Tian, Y.; Yan, L. K.; Su, Z. M. DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction. J. Phys. Chem. C 2018, 122, 7712–7719.

[25]

Humayun, M.; Sun, N.; Raziq, F.; Zhang, X. L.; Yan, R.; Li, Z. J.; Qu, Y.; Jing, L. Q. Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient Nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons. Appl. Catal. B Environ. 2018, 231, 23–33.

[26]

Li, Z. S.; Lv, L.; Wang, J. S.; Ao, X.; Ruan, Y. J.; Zha, D.; Hong, G.; Wu, Q. H.; Lan, Y. C.; Wang, C. D. et al. Engineering phosphorus-doped LaFeO3− δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy 2018, 47, 199–209.

[27]

Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767.

[28]

Zhang, X. H.; Pei, C. L.; Chang, X.; Chen, S.; Liu, R.; Zhao, Z. J.; Mu, R. T.; Gong, J. L. FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting. J. Am. Chem. Soc. 2020, 142, 11540–11549.

[29]

Zhang, X. H.; Su, Y. H.; Pei, C. L.; Zhao, Z. J.; Liu, R.; Gong, J. L. Chemical looping steam reforming of methane over Ce-doped perovskites. Chem. Eng. Sci. 2020, 223, 115707.

[30]

Zhu, P. C.; Lyu, D. D.; Shen, P. K. High-performance yttrium-iron alloy doped Pt-free catalysts on graphene for hydrogen evolution. RSC Adv. 2018, 8, 40866–40872.

[31]

Manwar, N. R.; Borkar, R. G.; Khobragade, R.; Rayalu, S. S.; Jain, S. L.; Bansiwal, A. K.; Labhsetwar, N. K. Efficient solar photo-electrochemical hydrogen generation using nanocrystalline CeFeO3 synthesized by a modified microwave assisted method. Int. J. Hydrogen Energy 2017, 42, 10931–10942.

[32]

Hou, L.; Shi, L.; Zhao, J. Y.; Zhou, S. M.; Pan, S. Y.; Yuan, X. Y.; Xin, Y. Room-temperature multiferroicity in CeFeO3 ceramics. J. Alloys Compd. 2019, 797, 363–369.

[33]

Yang, J.; Hu, R. S.; Meng, W. W.; Du, Y. F. A novel p-LaFeO3/n-Ag3PO4 heterojunction photocatalyst for phenol degradation under visible light irradiation. Chem. Commun. 2016, 52, 2620–2623.

[34]

Xie, K.; Umezawa, N.; Zhang, N.; Reunchan, P.; Zhang, Y. J.; Ye, J. H. Self-doped SrTiO3− δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy Environ. Sci. 2011, 4, 4211–4219.

[35]

Mao, C. L.; Wang, J. X.; Zou, Y. J.; Li, H.; Zhan, G. M.; Li, J.; Zhao, J. C.; Zhang, L. Z. Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chem. 2019, 21, 2852–2867.

[36]

Sheng, J. P.; He, Y.; Huang, M.; Yuan, C. W.; Wang, S. Y.; Dong, F. Frustrated Lewis pair sites boosting CO2 photoreduction on Cs2CuBr4 perovskite quantum dots. ACS Catal. 2022, 12, 2915–2926.

[37]

Chen, P.; Lei, B.; Dong, X.; Wang, H.; Sheng, J. P.; Cui, W.; Li, J. Y.; Sun, Y. J.; Wang, Z. M.; Dong, F. Rare-earth single-atom La–N charge-transfer bridge on carbon nitride for highly efficient and selective photocatalytic CO2 reduction. ACS Nano 2020, 14, 15841–15852.

[38]

Di, J.; Chen, C.; Yang, S. Z.; Chen, S. M.; Duan, M. L.; Xiong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z. et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 2019, 10, 2840.

[39]

Long, R.; Li, Y.; Liu, Y.; Chen, S. M.; Zheng, X. S.; Gao, C.; He, C. H.; Chen, N. S.; Qi, Z. M.; Song, L. et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486–4492.

[40]

Qi, Y. H.; Song, L. Z.; Ouyang, S. X.; Liang, X. C.; Ning, S. B.; Zhang, Q. Q.; Ye, J. H. Photoinduced defect engineering: Enhanced photothermal catalytic performance of 2D black In2O3− x nanosheets with bifunctional oxygen vacancies. Adv. Mater. 2020, 32, 1903915.

[41]

Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Zheng, L. R.; Cao, X. Z.; Teng, F.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv. Mater. 2017, 29, 1703828.

[42]

Smolin, S. Y.; Choquette, A. K.; Wang, J. Y.; May, S. J.; Baxter, J. B. Distinguishing thermal and electronic effects in ultrafast optical spectroscopy using oxide heterostructures. J. Phys. Chem. C 2018, 122, 115–123.

[43]

Liang, J. L.; Song, Q. Q.; Wu, J. H.; Lei, Q.; Li, J.; Zhang, W.; Huang, Z. M.; Kang, T. X.; Xu, H.; Wang, P. et al. Anchoring copper single atoms on porous boron nitride nanofiber to boost selective reduction of nitroaromatics. ACS Nano 2022, 16, 4152–4161.

[44]

Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594.

[45]

Yang, J. J.; Ruan, Z. S. L.; Jiang, S. L.; Xia, P. F.; Yang, Q. H.; Zhang, Q.; Xiao, C.; Xie, Y. Ce-doped W18O49 nanowires for tuning N2 activation toward direct nitrate photosynthesis. J. Phys. Chem. Lett. 2021, 12, 11295–11302.

[46]

Humayun, M.; Zada, A.; Li, Z. J.; Xie, M. Z.; Zhang, X. L.; Qu, Y.; Raziq, F.; Jing, L. Q. Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism. Appl. Catal. B Environ. 2016, 180, 219–226.

[47]

Park, H.; Choi, W. Photoelectrochemical investigation on electron transfer mediating behaviors of polyoxometalate in UV-illuminated suspensions of TiO2 and Pt/TiO2. J. Phys. Chem. B 2003, 107, 3885–3890.

[48]

Acharya, S.; Mansingh, S.; Parida, K. M. The enhanced photocatalytic activity of g-C3N4-LaFeO3 for the water reduction reaction through a mediator free Z-scheme mechanism. Inorg. Chem. Front. 2017, 4, 1022–1032

[49]

Luo, J. Y.; Bai, X. X.; Li, Q.; Yu, X.; Li, C. Y.; Wang, Z. N.; Wu, W. W.; Liang, Y. P.; Zhao, Z. H.; Liu, H. Band structure engineering of bioinspired Fe doped SrMoO4 for enhanced photocatalytic nitrogen reduction performance. Nano Energy 2019, 66, 104187.

[50]

Feldmann, S.; Gangishetty, M. K.; Bravić, I.; Neumann, T.; Peng, B.; Winkler, T.; Friend, R. H.; Monserrat, B.; Congreve, D. N.; Deschler, F. Charge carrier localization in doped perovskite nanocrystals enhances radiative recombination. J. Am. Chem. Soc. 2021, 143, 8647–8653.

[51]

Li, W. L.; Ertural, C.; Bogdanovski, D.; Li, J.; Dronskowski, R. Chemical bonding of crystalline LnB6 (Ln = La–Lu) and its relationship with Ln2B8 gas-phase complexes. Inorg. Chem. 2018, 57, 12999–13008.

[52]

Zhang, J. F.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS. Appl. Catal. B Environ. 2016, 192, 101–107.

[53]

Zhang, J. F.; Yu, W. L.; Liu, J. J.; Liu, B. S. Illustration of high-active Ag2CrO4 photocatalyst from the first-principle calculation of electronic structures and carrier effective mass. Appl. Surf. Sci. 2015, 358, 457–462.

[54]

Yu, W. L.; Zhang, J. F.; Peng, T. Y. New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl. Catal. B Environ. 2016, 181, 220–227.

[55]

Mahmood, A.; Shi, G. S.; Wang, X.; Xie, X. F.; Sun, J. Photocatalytic properties of novel two-dimensional B4C3/g-C3N4 van der Waals heterojunction with moderate bandgap and high carrier mobility: A theoretical study. Appl. Catal. B Environ. 2020, 278, 119310.

[56]

Izumi, Y. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 2013, 257, 171–186.

[57]

Schreck, M.; Niederberger, M. Photocatalytic gas phase reactions. Chem. Mater. 2019, 31, 597–618.

Nano Research
Pages 3733-3744
Cite this article:
Cao C, Li J, Hu Y, et al. Mechanism investigation of A-site doping on modulating electronic band structure and photocatalytic performance towards CO2 reduction of LaFeO3 perovskite. Nano Research, 2024, 17(5): 3733-3744. https://doi.org/10.1007/s12274-023-6285-7
Topics:

654

Views

1

Crossref

1

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 August 2023
Revised: 12 October 2023
Accepted: 22 October 2023
Published: 14 November 2023
© Tsinghua University Press 2023
Return