AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Alloyed Pt-Sn nanoparticles on hierarchical nitrogen-doped carbon nanocages for advanced glycerol electrooxidation

Jietao Jiang1Liqi Zhou2Fengfei Xu1Guanghai Chen1Xiaoyu Liu1Zhen Shen1Lijun Yang1Qiang Wu1( )Xizhang Wang1( )Zheng Hu1( )
Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Show Author Information

Graphical Abstract

Pt3Sn alloyed nanoparticles are highly dispersed on hierarchical nitrogen-doped carbon nanocages, which exhibit excellent performance for glycerol oxidation reaction due to the unique Pt3Sn alloying effect and Sn-enriched surface.

Abstract

Glycerol is an alternative sustainable fuel for fuel cells, and efficient electrocatalyst is crucial for glycerol oxidation reaction (GOR). The promising Pt catalysts are subject to the inadequate capability of C–C bond cleavage and the susceptibility to poisoning. Herein, Pt-Sn alloyed nanoparticles are immobilized on hierarchical nitrogen-doped carbon nanocages (hNCNCs) by convenient ethylene glycol reduction and subsequent thermal reduction. The optimal Pt3Sn/hNCNC catalyst exhibits excellent GOR performance with a high mass activity (5.9 A·mgPt−1), which is 2.7 and 5.4 times higher than that of Pt/hNCNC and commercial Pt/C, respectively. Such an enhancement can be mainly ascribed to the increased anti-poisoning and C–C bond cleavage capability due to the Pt3Sn alloying effect and Sn-enriched surface, the high dispersion of Pt3Sn active species due to N-participation, as well as the high accessibility of Pt3Sn active species due to the three-dimensional (3D) hierarchical architecture of hNCNC. This study provides an effective GOR electrocatalyst and convenient approach for catalyst preparation.

Electronic Supplementary Material

Download File(s)
12274_2023_6288_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Ozalp, N.; Abedini, H.; Abuseada, M.; Davis, R.; Rutten, J.; Verschoren, J.; Ophoff, C.; Moens, D. An overview of direct carbon fuel cells and their promising potential on coupling with solar thermochemical carbon production. Renew. Sustain. Energy Rev. 2022, 162, 112427.

[2]

Chen, H. H.; Tao, R.; Bang, K. T.; Shao, M. H.; Kim, Y. Anion exchange membranes for fuel cells: State-of-the-art and perspectives. Adv. Energy Mater. 2022, 12, 2200934.

[3]

Zalineeva, A.; Serov, A.; Padilla, M.; Martinez, U.; Artyushkova, K.; Baranton, S.; Coutanceau, C.; Atanassov, P. B. Self-supported Pd x Bi catalysts for the electrooxidation of glycerol in alkaline media. J. Am. Chem. Soc. 2014, 136, 3937–3945.

[4]

Chen, W.; Luo, S. P.; Sun, M. Z.; Wu, X. Y.; Zhou, Y. S.; Liao, Y. J.; Tang, M.; Fan, X. K.; Huang, B. L.; Quan, Z. W. High-entropy intermetallic ptrhbisnsb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv. Mater. 2022, 34, 2206276.

[5]

Yang, F.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; Xie, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Gu, L.; Wang, X. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235.

[6]

Liu, J. F.; Wang, Q. X.; Li, T.; Wang, Y.; Li, H. M.; Cabot, A. PdMoSb trimetallene as high-performance alcohol oxidation electrocatalyst. Nano Res. 2023, 16, 2041–2048.

[7]

Chen, Z. X.; Liu, C. B.; Zhao, X. X.; Yan, H.; Li, J.; Lyu, P.; Du, Y. H.; Xi, S. B.; Chi, K.; Chi, X. et al. Promoted glycerol oxidation reaction in an interface-confined hierarchically structured catalyst. Adv. Mater. 2019, 31, 1804763.

[8]

Mou, H. S.; Chang, Q. W.; Xie, Z. H.; Hwang, S.; Kattel, S.; Chen, J. G. Enhancing glycerol electrooxidation from synergistic interactions of platinum and transition metal carbides. Appl. Catal. B: Environ. 2022, 316, 121648.

[9]

Cui, X. X.; Li, Y. L.; Zhao, M. Y.; Xu, Y. S.; Chen, L. L.; Yang, S. G.; Wang, Y. Facile growth of ultra-small Pd nanoparticles on zeolite-templated mesocellular graphene foam for enhanced alcohol electrooxidation. Nano Res. 2019, 12, 351–356.

[10]

Wang, H. B.; Thia, L.; Li, N.; Ge, X. M.; Liu, Z. L.; Wang, X. Pd Nanoparticles on carbon nitride-graphene for the selective electro-oxidation of glycerol in alkaline solution. ACS Catal. 2015, 5, 3174–3180.

[11]

Qi, J.; Xin, L.; Chadderdon, D. J.; Qiu, Y.; Jiang, Y. B.; Benipal, N.; Liang, C. H.; Li, W. Z. Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration. Appl. Catal. B: Environ. 2014, 154–155, 360–368

[12]

Lima, C. C.; Rodrigues, M. V. F.; Neto, A. F. M.; Zanata, C. R.; Pires, C. T. G. V. M. T.; Costa, L. S.; Solla-Gullón, J.; Fernández, P. S. Highly active Ag/C nanoparticles containing ultra-low quantities of sub-surface Pt for the electrooxidation of glycerol in alkaline media. Appl. Catal. B: Environ. 2020, 279, 119369.

[13]

Houache, M. S. E.; Sandoval, M. G.; Safari, R.; Gaztañaga, F.; Escudero, F.; Hernández-Laguna, A.; Sainz-Díaz, C. I.; Botton, G. A.; Jasen, P. V.; Gonzáalez, E. A. et al. Morphology alteration of nickel microstructures for glycerol electrooxidation. J. Catal. 2021, 404, 348–361.

[14]

Garcia, A. C.; Kolb, M. J.; van Nierop y Sanchez, C.; Vos, J.; Birdja, Y. Y.; Kwon, Y.; Tremiliosi-Filho, G.; Koper, M. T. M. Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol. ACS Catal. 2016, 6, 4491–4500.

[15]

Li, T.; Wang, Q. X.; Zhang, W. J.; Li, H. M.; Wang, Y.; Liu, J. F. Length-tunable Pd2Sn@Pt core–shell nanorods for enhanced ethanol electrooxidation with concurrent hydrogen production. Chem. Sci. 2023, 14, 9488–9495.

[16]

Rizo, R.; Sebastián, D.; Lázaro, M. J.; Pastor, E. On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl. Catal. B: Environ. 2017, 200, 246–254.

[17]

Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Structurally ordered Pt3Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts. ACS Catal. 2020, 10, 3455–3461.

[18]

Liu, Y. F.; Wei, M. J.; Raciti, D.; Wang, Y. X.; Hu, P. F.; Park, J. H.; Barclay, M.; Wang, C. Electro-oxidation of ethanol using Pt3Sn alloy nanoparticles. ACS Catal. 2018, 8, 10931–10937.

[19]

Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C–C bond cleavage for ethanol oxidation electrocatalysis. ACS Catal. 2019, 9, 6607–6612.

[20]

Gao, F.; Zhang, Y. P.; Song, P. P.; Wang, J.; Song, T. X.; Wang, C.; Song, L.; Shiraishi, Y.; Du, Y. K. Precursor-mediated size tuning of monodisperse PtRh nanocubes as efficient electrocatalysts for ethylene glycol oxidation. J. Mater. Chem. A. 2019, 7, 7891–7896.

[21]

Lai, J. P.; Lin, F.; Tang, Y. H.; Zhou, P.; Chao, Y. G.; Zhang, Y. L.; Guo, S. J. Efficient bifunctional polyalcohol oxidation and oxygen reduction electrocatalysts enabled by ultrathin PtPdM (M = Ni, Fe, Co) nanosheets. Adv. Energy Mater. 2019, 9, 1800684.

[22]

Wang, Q. X.; Liu, J. F.; Zhang, W.; Li, T.; Wang, Y.; Li, H. M.; Cabot, A. Branch-regulated palladium-antimony nanoparticles boost ethanol electro-oxidation to acetate. Inorg. Chem. 2022, 61, 6337–6346.

[23]

Wan, T. T.; Huang, X.; Li, S. C.; Li, Q. Y.; Yang, X. L.; Sun, Z. J.; Xiang, D.; Wang, K.; Li, P.; Zhu, M. Z. Fabrication of 3D hollow acorn–shell-like PtBi intermetallics via a surfactant-free pathway for efficient ethylene glycol electrooxidation. Nano Res. 2023, 16, 6560–6567.

[24]

Li, Z.; Qiu, G. F.; Jiang, Z. Z.; Zhuang, W. C.; Wu, J. J.; Du, X. H. Tuning concave Pt-Sn nanocubes for efficient ethylene glycol and glycerol electrocatalysis. Int. J. Hydrogen Energy 2018, 43, 22538–22547.

[25]

Jiang, X. F.; Wang, X. B.; Shen, L. M.; Wu, Q.; Wang, Y. N.; Ma, Y. W.; Wang, X. Z.; Hu, Z. High-performance Pt catalysts supported on hierarchical nitrogen-doped carbon nanocages for methanol electrooxidation. Chin. J. Catal. 2016, 37, 1149–1155.

[26]

Qiao, Z.; Hwang, S.; Li, X.; Wang, C. Y.; Samarakoon, W.; Karakalos, S.; Li, D. G.; Chen, M. J.; He, Y. H.; Wang, M. Y. et al. 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: A balance between graphitization and hierarchical porosity. Energy Environ. Sci. 2019, 12, 2830–2841

[27]

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, 1904177.

[28]

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 2017, 50, 435–444.

[29]

Zhang, Z. Q.; Wu, Q.; Mao, K.; Chen, Y. G.; Du, L. Y.; Bu, Y. F.; Zhuo, O.; Yang, L. J.; Wang, X. Z.; Hu, Z. Efficient ternary synergism of platinum/tin oxide/nitrogen-doped carbon leading to high-performance ethanol oxidation. ACS Catal. 2018, 8, 8477–8483.

[30]

Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 5593–5597.

[31]

Zhao, J.; Lai, H. W.; Lyu, Z. Y.; Jiang, Y. F.; Xie, K.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Jin, Z.; Ma, Y. W. et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 2015, 27, 3541–3545.

[32]

Xie, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z. Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 2012, 24, 347–352.

[33]

Bu, Y. F.; Sun, T.; Cai, Y. J.; Du, L. Y.; Zhuo, O.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors. Adv. Mater. 2017, 29, 1700470.

[34]
Jiang, L. H.; Sun, G. Q.; Zhou, Z. H.; Zhou, W. J.; Xin, Q. Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell. Catal. Today 2004 , 93–95, 665–670.
[35]

Zhang, Z. Q.; Chen, Y. G.; Zhou, L. Q.; Chen, C.; Han, Z.; Zhang, B. S.; Wu, Q.; Yang, L. J.; Du, L. Y.; Bu, Y. F. et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.

[36]

Luo, F.; Roy, A.; Silvioli, L.; Cullen, D. A.; Zitolo, A.; Sougrati, M. T.; Oguz, I. C.; Mineva, T.; Teschner, D.; Wagner, S. et al. P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nat. Mater. 2020, 19, 1215–1223

[37]

Kim, J. H.; Choi, S. M.; Nam, S. H.; Seo, M. H.; Choi, S. H.; Kim, W. B. Influence of Sn content on PtSn/C catalysts for electrooxidation of C1-C3 alcohols: Synthesis, characterization, and electrocatalytic activity. Appl. Catal. B: Environ. 2008, 82, 89–102.

[38]

Zhang, Z. C.; Tian, X. C.; Zhang, B. W.; Huang, L.; Zhu, F. C.; Qu, X. M.; Liu, L.; Liu, S.; Jiang, Y. X.; Sun, S. G. Engineering phase and surface composition of Pt3Co nanocatalysts: A strategy for enhancing CO tolerance. Nano Energy 2017, 34, 224–232.

[39]

Lu, S. Q.; Li, H. M.; Sun, J. Y.; Zhuang, Z. B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res. 2018, 11, 2058–2068.

[40]

Dai, C. C.; Sun, L. B.; Liao, H. B.; Khezri, B.; Webster, R. D.; Fisher, A. C.; Xu, Z. J. Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. J. Catal. 2017, 356, 14–21.

[41]

Kwon, Y.; Schouten, K. J. P.; Koper, M. T. M. Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes. ChemCatChem 2011, 3, 1176–1185.

[42]

Fang, Y.; Guo, S. Y.; Cao, D. J.; Zhang, G. L.; Wang, Q.; Chen, Y. Z.; Cui, P.; Cheng, S.; Zuo, W. S. Five-fold twinned Ir-alloyed Pt nanorods with high C1 pathway selectivity for ethanol electrooxidation. Nano Res. 2022, 15, 3933–3939.

[43]

Wang, Y.; Li, M. F.; Yang, Z. L.; Lai, W. C.; Ge, J. J.; Shao, M. H.; Xiang, Y.; Chen, X. L.; Huang, H. W. A universal synthesis of ultrathin Pd-based nanorings for efficient ethanol electrooxidation. Mater. Horiz. 2023, 10, 1416–1424.

[44]

Li, T. Y.; Harrington, D. A. An overview of glycerol electrooxidation mechanisms on Pt, Pd and Au. ChemSusChem 2021, 14, 1472–1495.

Nano Research
Pages 4055-4061
Cite this article:
Jiang J, Zhou L, Xu F, et al. Alloyed Pt-Sn nanoparticles on hierarchical nitrogen-doped carbon nanocages for advanced glycerol electrooxidation. Nano Research, 2024, 17(5): 4055-4061. https://doi.org/10.1007/s12274-023-6288-4
Topics:

873

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 17 August 2023
Revised: 16 October 2023
Accepted: 23 October 2023
Published: 20 November 2023
© Tsinghua University Press 2023
Return