AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Odd-even effects in the structure and properties of aryl-substituted aliphatic self-assembled monolayers

Piotr Cyganik1Andreas Terfort2Michael Zharnikov3( )
Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
Institut für Anorganische und Analytische Chemie, Universität Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany
Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
Show Author Information

Graphical Abstract

The structure of aryl-substituted aliphatic self-assembled monolayers is largely governed by the parity of the number of methylene units in the alkyl linker of the molecules, providing a tool for purpose-specific design of these films.

Abstract

Self-assembled monolayers (SAMs) represent an important tool in context of nanofabrication and molecular engineering of surfaces and interfaces. The properties of functional SAMs depend not only on the character of the tail groups at the SAM-ambient interface, but are also largely defined by their structure. In its turn, the latter parameter results from a complex interplay of the structural forces and a variety of other factors, including so called odd-even effects, viz. dependence of the SAM structure and properties on the parity of the number (odd or even) of individual building blocks in the backbone of the SAM constituents. The most impressive manifestation of the odd-even effects is the structure of aryl-substituted alkanethiolate SAMs on Au(111) and Ag(111), in which, in spite of the fact that the intermolecular interaction is mostly determined by the aryl part of the monolayers, one observes a pronounced dependence of molecular inclination and, consequently, the packing density of the SAM-forming molecules on the parity of number of methylene units in the alkyl linker. Here we review the properties of the above systems as well as address fundamental reasons behind the odd-even effects, including the existence of a so-called bending potential, which is frequently disregarded in analysis of the structure-building forces. The generality of the odd-even effects in SAMs is additionally supported by the recent data for SAMs on GaAs, scanning tunneling microscopy data for SAMs on Ag(111), and the data for the monolayers with selenolate and carboxyl anchoring groups on Au(111) and Ag(111). The implications of these effects in terms of the control over the packing density and orientation of the tail groups at the SAM-ambient interface, structural perfection, polymorphism, temperature-driven phase transitions, and SAM stability toward such factors as ionizing radiation, exchange reaction, and electrochemical desorption are discussed. These implications place the odd-even effects as an important tool for the design of functional SAMs in context of specific applications.

References

[1]

Schreiber, F. Self-assembled monolayers: From ‘simple’ model systems to biofunctionalized interfaces. J. Phys.: Condens. Matter 2004, 16, R881–R900.

[2]

Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170.

[3]

Kind, M.; Wöll, C. Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Prog. Surf. Sci. 2009, 84, 230–278.

[4]

Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C. Self-assembled monolayers of thiols and dithiols on gold: New challenges for a well-known system. Chem. Soc. Rev. 2010, 39, 1805–1834.

[5]

Gooding, J. J.; Ciampi, S. The molecular level modification of surfaces: From self-assembled monolayers to complex molecular assemblies. Chem. Soc. Rev. 2011, 40, 2704–2718.

[6]

Turchanin, A.; Gölzhäuser, A. Carbon nanomembranes. Adv. Mater. 2016, 28, 6075–6103.

[7]

Casalini, S.; Bortolotti, C. A.; Leonardi, F.; Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 2017, 46, 40–71.

[8]

Liu, D. Q.; Miao, Q. Recent progress in interface engineering of organic thin film transistors with self-assembled monolayers. Mater. Chem. Front. 2018, 2, 11–21.

[9]

Sizov, A. S.; Agina, E. V.; Ponomarenko, S. A. Self-assembled semiconducting monolayers in organic electronics. Russ. Chem. Rev. 2018, 87, 1226–1264.

[10]

Kong, G. D.; Byeon, S. E.; Park, S.; Song, H.; Kim, S. Y.; Yoon, H. J. Mixed molecular electronics: Tunneling behaviors and applications of mixed self-assembled monolayers. Adv. Electron. Mater. 2020, 6, 1901157.

[11]

Liu, Y. R.; Qiu, X. K.; Soni, S.; Chiechi, R. C. Charge transport through molecular ensembles: Recent progress in molecular electronics. Chem. Phys. Rev. 2021, 2, 021303.

[12]

Telegdi, J. Formation of self-assembled anticorrosion films on different metals. Materials 2020, 13, 5089.

[13]

Terfort, A.; Zharnikov, M. Electron-irradiation promoted exchange reaction as a tool for surface engineering and chemical lithography. Adv. Mater. Interfaces 2021, 8, 2100148.

[14]

Gupta, R.; Fereiro, J. A.; Bayat, A.; Pritam, A.; Zharnikov, M.; Mondal, P. C. Nanoscale molecular rectifiers. Nat. Rev. Chem. 2023, 7, 106–122.

[15]

Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 2000, 65, 151–257.

[16]

Zharnikov, M.; Frey, S.; Rong, H.; Yang, Y. J.; Heister, K.; Buck, M.; Grunze, M. The effect of sulfur-metal bonding on the structure of self-assembled monolayers. Phys. Chem. Chem. Phys. 2000, 2, 3359–3362.

[17]

Rong, H. T.; Frey, S.; Yang, Y. J.; Zharnikov, M.; Buck, M.; Wühn, M.; Wöll, C.; Helmchen, G. On the importance of the headgroup substrate bond in thiol monolayers: A study of biphenyl-based thiols on gold and silver. Langmuir 2001, 17, 1582–1593.

[18]

Tao, F.; Bernasek, S. L. Understanding odd-even effects in organic self-assembled monolayers. Chem. Rev. 2007, 107, 1408–1453.

[19]

Tao, Y. T.; Wu, C. C.; Eu, J. Y.; Lin, W. L.; Wu, K. C.; Chen, C. H. Structure evolution of aromatic-derivatized thiol monolayers on evaporated gold. Langmuir 1997, 13, 4018–4023.

[20]

Ishida, T.; Mizutani, W.; Akiba, U.; Umemura, K.; Inoue, A.; Choi, N.; Fujihira, M.; Tokumoto, H. Lateral electrical conduction in organic monolayer. J. Phys. Chem. B 1999, 103, 1686–1690.

[21]

Fuxen, C.; Azzam, W.; Arnold, R.; Witte, G.; Terfort, A.; Wöll, C. Structural characterization of organothiolate adlayers on gold: The case of rigid, aromatic backbones. Langmuir 2001, 17, 3689–3695.

[22]

Ishida, T.; Mizutani, W.; Choi, N.; Akiba, U.; Fujihira, M.; Tokumoto, H. Structural effects on electrical conduction of conjugated molecules studied by scanning tunneling microscopy. J. Phys. Chem. B 2000, 104, 11680–11688.

[23]

Ishida, T.; Mizutani, W.; Tokumoto, H.; Choi, N.; Akiba, U.; Fujihira, M. Insertion process and electrical conduction of conjugated molecules in n-alkanethiol self-assembled monolayers on Au(111). J. Vac. Sci. Technol. A 2000, 18, 1437–1442.

[24]

Lee, S.; Puck, A.; Graupe, M.; Colorado, R.; Shon, Y. S.; Lee, T. R.; Perry, S. S. Structure, wettability, and frictional properties of phenyl-terminated self-assembled monolayers on gold. Langmuir 2001, 17, 7364–7370.

[25]

Zharnikov, M. Near-edge X-ray absorption fine structure spectroscopy in studies of self-assembled monomolecular films. J. Electron Spectrosc. Relat. Phenom. 2023, 264, 147322.

[26]

Azzam, W.; Cyganik, P.; Witte, G.; Buck, M.; Wöll, C. Pronounced odd-even changes in the molecular arrangement and packing density of biphenyl-based thiol SAMs: A combined STM and LEED study. Langmuir 2003, 19, 8262–8270.

[27]

Cyganik, P.; Buck, M.; Azzam, W.; Wöll, C. Self-assembled monolayers of ω-biphenylalkanethiols on Au(111): Influence of spacer chain on molecular packing. J. Phys. Chem. B 2004, 108, 4989–4996.

[28]

Heister, K.; Rong, H. T.; Buck, M.; Zharnikov, M.; Grunze, M.; Johansson, L. S. O. Odd-even effects at the S-metal interface and in the aromatic matrix of biphenyl-substituted alkanethiol self-assembled monolayers. J. Phys. Chem. B 2001, 105, 6888–6894.

[29]

Laibinis, P. E.; Whitesides, G. M.; Allara, D. L.; Tao, Y. T.; Parikh, A. N.; Nuzzo, R. G. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J. Am. Chem. Soc. 1991, 113, 7152–7167.

[30]

Häkkinen, H. The gold-sulfur interface at the nanoscale. Nat. Chem. 2012, 4, 443–455.

[31]

Forster-Tonigold, K.; Groß, A. A systematic DFT study of substrate reconstruction effects due to thiolate and selenolate adsorption. Surf. Sci. 2015, 640, 18–24.

[32]

Cyganik, P.; Buck, M.; Strunskus, T.; Shaporenko, A.; Wilton-Ely, J. D. E. T.; Zharnikov, M. Wöll, C. Competition as a design concept: Polymorphism in self-assembled monolayers of biphenyl-based thiols. J. Am. Chem. Soc. 2006, 128, 13868–13878.

[33]

Shaporenko, A.; Brunnbauer, M.; Terfort, A.; Johansson, L. S. O.; Grunze, M.; Zharnikov, M. Odd-even effects in photoemission from terphenyl-substituted alkanethiolate self-assembled monolayers. Langmuir 2005, 21, 4370–4375.

[34]

Heimel, G.; Romaner, L.; Brédas, J. L.; Zojer, E. Odd-even effects in self-assembled monolayers of ω-(biphenyl-4-yl)alkanethiols: A first-principles study. Langmuir 2008, 24, 474–482.

[35]

Shaporenko, A.; Brunnbauer, M.; Terfort, A.; Grunze, M.; Zharnikov, M. Structural forces in self-assembled monolayers: Terphenyl-substituted alkanethiols on noble metal substrates. J. Phys. Chem. B 2004, 108, 14462–14469.

[36]

Azzam, W.; Bashir, A.; Terfort, A.; Strunskus, T.; Wöll, C. Combined STM and FTIR characterization of terphenylalkanethiol monolayers on Au(111): Effect of alkyl chain length and deposition temperature. Langmuir 2006, 22, 3647–3655.

[37]

Chesneau, F.; Schüpbach, B.; Szelągowska-Kunstman, K.; Ballav, N.; Cyganik, P.; Terfort, A.; Zharnikov, M. Self-assembled monolayers of perfluoroterphenyl-substituted alkanethiols: Specific characteristics and odd-even effects. Phys. Chem. Chem. Phys. 2010, 12, 12123–12137.

[38]

Partes, C.; Sauter, E.; Gärtner, M.; Kind, M.; Asyuda, A.; Bolte, M.; Zharnikov, M.; Terfort, A. Reestablishing odd-even effects in anthracene-derived monolayers by introduction of a pseudo- C2 v symmetry. J. Phys. Chem. C 2019, 123, 20362–20372.

[39]

Zhang, Z. B.; Wächter, T.; Kind, M.; Schuster, S.; Bats, J. W.; Nefedov, A.; Zharnikov, M.; Terfort, A. Self-assembled monolayers of perfluoroanthracenylaminoalkane thiolates on gold as potential electron injection layers. ACS Appl. Mater. Interfaces 2016, 8, 7308–7319.

[40]

Ballav, N.; Schüpbach, B.; Dethloff, O.; Feulner, P.; Terfort, A.; Zharnikov, M. Direct probing molecular twist and tilt in aromatic self-assembled monolayers. J. Am. Chem. Soc. 2007, 129, 15416–15417.

[41]

Ballav, N.; Schüpbach, B.; Neppl, S.; Feulner, P.; Terfort, A.; Zharnikov, M. Biphenylnitrile-based self-assembled monolayers on Au(111): Spectroscopic characterization and resonant excitation of the nitrile tail group. J. Phys. Chem. C 2010, 114, 12719–12727.

[42]

Gnatek, D.; Schuster, S.; Ossowski, J.; Khan, M.; Rysz, J.; Krakert, S.; Terfort, A.; Zharnikov, M.; Cyganik, P. Odd-even effects in the structure and stability of azobenzene-substituted alkanethiolates on Au(111) and Ag(111) substrates. J. Phys. Chem. C 2015, 119, 25929–25944.

[43]

Shaporenko, A.; Müller, J.; Weidner, T.; Terfort, A.; Zharnikov, M. Balance of structure-building forces in selenium-based self-assembled monolayers. J. Am. Chem. Soc. 2007, 129, 2232–2233.

[44]

Cyganik, P.; Szelągowska-Kunstman, K.; Terfort, A.; Zharnikov, M. Odd-even effect in molecular packing of biphenyl-substituted alkaneselenolate self-assembled monolayers on Au(111): Scanning tunneling microscopy study. J. Phys. Chem. C 2008, 112, 15466–15473.

[45]

Weidner, T.; Shaporenko, A.; Müller, J.; Schmid, M.; Cyganik, P.; Terfort, A.; Zharnikov, M. Effect of the bending potential on molecular arrangement in alkaneselenolate self-assembled monolayers. J. Phys. Chem. C 2008, 112, 12495–12506.

[46]

Shaporenko, A.; Cyganik, P.; Buck, M.; Terfort, A.; Zharnikov, M. Self-assembled monolayers of aromatic selenolates on noble metal substrates. J. Phys. Chem. B 2005, 109, 13630–13638.

[47]

Bashir, A.; Käfer, D.; Müller, J.; Wöll, C.; Terfort, A.; Witte, G. Selenium as a key element for highly ordered aromatic self-assembled monolayers. Angew. Chem., Int. Ed. 2008, 47, 5250–5252.

[48]

Ossowski, J.; Wächter, T.; Silies, L.; Kind, M.; Noworolska, A.; Blobner, F.; Gnatek, D.; Rysz, J.; Bolte, M.; Feulner, P. et al. Thiolate versus selenolate: Structure, stability, and charge transfer properties. ACS Nano 2015, 9, 4508–4526.

[49]

Lu, H.; Terfort, A.; Zharnikov, M. Bending potential as an important factor for the structure of monomolecular thiolate layers on GaAs substrates. J. Phys. Chem. Lett. 2013, 4, 2217–2222.

[50]

McGuiness, C. L.; Diehl, G. A.; Blasini, D.; Smilgies, D. M.; Zhu, M.; Samarth, N.; Weidner, T.; Ballav, N.; Zharnikov, M.; Allara, D. L. Molecular self-assembly at bare semiconductor surfaces: Cooperative substrate-molecule effects in octadecanethiolate monolayer assemblies on GaAs(111), (110), and (100). ACS Nano 2010, 4, 3447–3465

[51]

Lu, H.; Zharnikov, M. Structure-building forces in biphenyl-substituted alkanethiolate self-assembled monolayers on GaAs(001): The effect of the bending potential. J. Phys. Chem. C 2015, 119, 27401–27409.

[52]

Dauselt, J.; Zhao, J. L.; Kind, M.; Binder, R.; Bashir, A.; Terfort, A.; Zharnikov, M. Compensation of the odd-even effects in araliphatic self-assembled monolayers by nonsymmetric attachment of the aromatic part. J. Phys. Chem. C 2011, 115, 2841–2854.

[53]

Cyganik, P.; Buck, M. Polymorphism in biphenyl-based self-assembled monolayers of thiols. J. Am. Chem. Soc. 2004, 126, 5960–5961.

[54]

Dendzik, M.; Terfort, A.; Cyganik, P. Odd-even effect in the polymorphism of self-assembled monolayers of biphenyl-substituted alkaneselenolates on Au(111). J. Phys. Chem. C 2012, 116, 19535–19542.

[55]

Krzykawska, A.; Szwed, M.; Ossowski, J.; Cyganik, P. Odd-even effect in molecular packing of self-assembled monolayers of biphenyl-substituted fatty acid on Ag(111). J. Phys. Chem. C 2018, 122, 919–928.

[56]

Zharnikov, M.; Grunze, M. Modification of thiol-derived self-assembling monolayers by electron and X-ray irradiation: Scientific and lithographic aspects. J. Vac. Sci. Technol. B 2002, 20, 1793–1807.

[57]

Frey, S.; Rong, H. T.; Heister, K.; Yang, Y. J.; Buck, M.; Zharnikov, M. Response of biphenyl-substituted alkanethiol self-assembled monolayers to electron irradiation: Damage suppression and odd-even effects. Langmuir 2002, 18, 3142–3150.

[58]

Kruk, M.; Neumann, C.; Frey, M.; Kozieł, K.; Turchanin, A.; Cyganik, P. Odd-even effect in electron beam irradiation of hybrid aromatic-aliphatic self-assembled monolayers of fatty acid. J. Phys. Chem. C 2021, 125, 9310–9318.

[59]

Neumann, C.; Szwed, M.; Frey, M.; Tang, Z. A.; Kozieł, K.; Cyganik, P.; Turchanin, A. Preparation of carbon nanomembranes without chemically active groups. ACS Appl. Mater. Interfaces 2019, 11, 31176–31181.

[60]

Szelagowska-Kunstman, K.; Cyganik, P.; Schüpbach, B.; Terfort, A. Relative stability of thiol and selenol based SAMs on Au(111)-exchange experiments. Phys. Chem. Chem. Phys. 2010, 12, 4400–4406.

[61]

Long, Y. T.; Rong, H. T.; Buck, M.; Grunze, M. Odd-even effects in the cyclic voltammetry of self-assembled monolayers of biphenyl based thiols. J. Electroanal. Chem. 2002, 524–525, 62–67

[62]

Vervaecke, F.; Wyczawska, S.; Cyganik, P.; Bastiaansen, J.; Postawa, Z.; Silverans, R. E.; Vandeweert, E.; Lievens, P. Odd-even effects in ion-beam-induced desorption of biphenyl-substituted alkanethiol self-assembled monolayers. ChemPhysChem 2011, 12, 140–144.

[63]

Ossowski, J.; Rysz, J.; Terfort, A.; Cyganik, P. Relative stability of thiolate and selenolate SAMs on Ag(111) substrate studied by static SIMS Oscillation in stability of consecutive chemical bonds. J. Phys. Chem. C 2017, 121, 459–470.

[64]

Yang, G. H.; Liu, G. Y. New insights for self-assembled monolayers of organothiols on Au(111) revealed by scanning tunneling microscopy. J. Phys. Chem. B 2003, 107, 8746–8759.

[65]

Cyganik, P.; Buck, M.; Wilton-Ely, J. D. E. T.; Wöll, C. Stress in self-assembled monolayers: ω-biphenyl alkane thiols on Au(111). J. Phys. Chem. B 2005, 109, 10902–10908.

[66]

Thom, I.; Buck, M. Electrochemical stability of self-assembled monolayers of biphenyl based thiols studied by cyclic voltammetry and second harmonic generation. Surf. Sci. 2005, 581, 33–46.

[67]

Cyganik, P.; Buck, M.; Strunskus, T.; Shaporenko, A.; Witte, G.; Zharnikov, M.; Wöll, C. Influence of molecular structure on phase transitions: A study of self-assembled monolayers of 2-(aryl)-ethane thiols. J. Phys. Chem. C 2007, 111, 16909–16919.

[68]

Vervaecke, F.; Wyczawska, S.; Cyganik, P.; Postawa, Z.; Buck, M.; Silverans, R. E.; Lievens, P.; Vandeweert, E. Phase-dependent desorption from biphenyl-substituted alkanethiol self-assembled monolayers induced by ion irradiation. J. Phys. Chem. C 2008, 112, 2248–2251.

[69]

Tai, Y.; Shaporenko, A.; Noda, H.; Grunze, M.; Zharnikov, M. Fabrication of stable metal films on the surface of self-assembled monolayers. Adv. Mater. 2005, 17, 1745–1749.

[70]

Abu-Husein, T.; Schuster, S.; Egger, D. A.; Kind, M.; Santowski, T.; Wiesner, A.; Chiechi, R.; Zojer, E.; Terfort, A.; Zharnikov, M. The effects of embedded dipoles in aromatic self-assembled monolayers. Adv. Funct. Mater. 2015, 25, 3943–3957.

[71]

Petritz, A.; Krammer, M.; Sauter, E.; Gärtner, M.; Nascimbeni, G.; Schrode, B.; Fian, A.; Gold, H.; Cojocaru, A.; Karner-Petritz, E. et al. Embedded dipole self-assembled monolayers for contact resistance tuning in p-type and n-type organic thin film transistors and flexible electronic circuits. Adv. Funct. Mater. 2018, 28, 1804462.

[72]

Zojer, E.; Terfort, A.; Zharnikov, M. Concept of embedded dipoles as a versatile tool for surface engineering. Acc. Chem. Res. 2022, 55, 1857–1867.

[73]

Taucher, T. C.; Hehn, I.; Hofmann, O. T.; Zharnikov, M.; Zojer, E. Understanding chemical versus electrostatic shifts in X-ray photoelectron spectra of organic self-assembled monolayers. J. Phys. Chem. C 2016, 120, 3428–3437.

[74]

Hehn, I.; Schuster, S.; Wächter, T.; Abu-Husein, T.; Terfort, A.; Zharnikov, M.; Zojer, E. Employing X-ray photoelectron spectroscopy for determining layer homogeneity in mixed polar self-assembled monolayers. J. Phys. Chem. Lett. 2016, 7, 2994–3000.

[75]

Zenasni, O.; Marquez, M. D.; Jamison, A. C.; Lee, H. J.; Czader, A.; Lee, T. R. Inverted surface dipoles in fluorinated self-assembled monolayers. Chem. Mater. 2015, 27, 7433–7446.

[76]

Lee, H. J.; Jamison, A. C.; Lee, T. R. Surface dipoles: A growing body of evidence supports their impact and importance. Acc. Chem. Res. 2015, 48, 3007–3015.

[77]

Marquez, M. D.; Zenasni, O.; Rodriguez, D.; Yu, T. L.; Sakunkaewkasem, S.; Toro Figueira, F.; Czader, A.; Baldelli, S.; Lee, T. R. Burying the inverted surface dipole: Self-assembled monolayers derived from alkyl-terminated partially fluorinated alkanethiols. Chem. Mater. 2020, 32, 953–968.

[78]

Wang, Z. J.; Chen, J. H.; Oyola-Reynoso, S.; Thuo, M. Empirical evidence for roughness-dependent limit in observation of odd-even effect in wetting properties of polar liquids on n-alkanethiolate self-assembled monolayers. Langmuir 2016, 32, 8230–8237.

[79]

Du, C. S.; Wang, Z.J.; Chen, J. H.; Martin, A.; Raturi, D.; Thuo, M. Role of nanoscale roughness and polarity in odd-even effect of self-assembled monolayers. Angew. Chem., Int. Ed. 2022, 61, e202205251.

[80]

Yuan, L.; Thompson, D.; Cao, L.; Nerngchangnong, N.; Nijhuis, C. A. One carbon matters: The origin and reversal of odd-even effects in molecular diodes with self-assembled monolayers of ferrocenyl-alkanethiolates. J. Phys. Chem. C 2015, 119, 17910–17919.

[81]

Yuan, L.; Nerngchamnong, N.; Cao, L.; Hamoudi, H.; del Barco, E.; Roemer, M.; Sriramula, R. K.; Thompson, D.; Nijhuis, C. A. Controlling the direction of rectification in a molecular diode. Nat. Commun. 2015, 6, 6324.

[82]

Thompson, D.; Nijhuis, C. A. Even the odd numbers help: Failure modes of SAM-based tunnel junctions probed via odd-even effects revealed in synchrotrons and supercomputers. Acc. Chem. Res. 2016, 49, 2061–2069.

[83]

Grabarek, A.; Walczak, Ł.; Cyganik, P. Odd-even effect in peptide SAMs-competition of secondary structure and molecule-substrate interaction. J. Phys. Chem. B 2021, 125, 10964–10971.

Nano Research
Pages 4231-4243
Cite this article:
Cyganik P, Terfort A, Zharnikov M. Odd-even effects in the structure and properties of aryl-substituted aliphatic self-assembled monolayers. Nano Research, 2024, 17(5): 4231-4243. https://doi.org/10.1007/s12274-023-6292-8
Topics:

623

Views

39

Downloads

3

Crossref

3

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 23 September 2023
Revised: 17 October 2023
Accepted: 26 October 2023
Published: 01 December 2023
© The Author(s) 2023

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return