AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A new nonfullerene acceptor with an extended π conjugation core enables ternary organic solar cells approaching 19% efficiency

Chunyan Liu1Nailiang Qiu2( )Zhengjin Li2Yan Lu1( )
School of Materials Science and Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, China
Show Author Information

Graphical Abstract

A new guest acceptor named TBF-2Cl exhibits a high lowest unoccupied molecular orbital (LUMO) level benefiting from the extended conjugated core. When blended with the host materials D18 and CH-6F, a remarkable power conversion efficiency of 18.92% was achieved for the optimal ternary device.

Abstract

In organic solar cells (OSCs), it is an effective way to improve the power conversion efficiency (PCE) by adding a guest component with appropriate absorption and energy levels in the host system. Herein, a new nonfullerene acceptor (NFA) named TBF-2Cl was developed by the strategy of expanding the π conjugated core of 2,2’-(((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b’]dithiophene-2,7-diyl)bis(methaneylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IDT-4Cl) with two benzene rings. With increase of benzene units, TBF-2Cl exhibits higher lowest unoccupied molecular orbital (LUMO) level of −3.75 eV than that of one benzene unit based NFA IDT-4Cl and fluorene core based NFA F-2Cl, which facilitates enhancing the open-circuit voltage (Voc) of ternary devices. Moreover, TBF-2Cl film shows a medium optical bandgap with the absorption range from 500–800 nm, being well complementary with the wide bandgap polymer donor D18 and narrow bandgap NFA CH-6F. Accordingly, a remarkable PCE of 18.92% with a high short-circuit current density (Jsc) of 27.40 mA·cm−2, a fill factor (FF) of 0.749, especially an outstanding Voc of 0.922 V was achieved for the optimal ternary device based on D18:TBF-2Cl:CH-6F, surpassing the binary counterpart (17.08%). The findings provide insight into the development of new guest acceptors for obtaining more efficient OSCs.

Electronic Supplementary Material

Download File(s)
12274_2023_6293_MOESM1_ESM.pdf (742.5 KB)

References

[1]

Cheng, P.; Li, G.; Zhan, X. W.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 2018, 12, 131–142.

[2]

Gillett, A. J.; Privitera, A.; Dilmurat, R.; Karki, A.; Qian, D. P.; Pershin, A.; Londi, G.; Myers, W. K.; Lee, J.; Yuan, J. et al. The role of charge recombination to triplet excitons in organic solar cells. Nature 2021, 597, 666–671.

[3]

Ge, J. F.; Xie, L.; Peng, R. X.; Ge, Z. Y. Organic photovoltaics utilizing small-molecule donors and Y-series nonfullerene acceptors. Adv. Mater. 2023, 35, 2206566.

[4]

Sun, Y. N.; Meng, L. X.; Wan, X. J.; Guo, Z. Q.; Ke, X.; Sun, Z. H.; Zhao, K.; Zhang, H. T.; Li, C. X.; Chen, Y. S. Flexible high-performance and solution-processed organic photovoltaics with robust mechanical stability. Adv. Funct. Mater. 2021, 31, 2010000.

[5]

Sun, Y. N.; Liu, T.; Kan, Y. Y.; Gao, K.; Tang, B.; Li, Y. L. Flexible organic solar cells: Progress and challenges. Small Sci. 2021, 1, 2100001.

[6]

Xue, P. Y.; Cheng, P.; Han, R. P. S.; Zhan, X. W. Printing fabrication of large-area non-fullerene organic solar cells. Mater. Horiz. 2022, 9, 194–219.

[7]

Zhang, S. C.; Chen, H. B.; Wang, P. R.; Li, S. T.; Li, Z. X.; Huang, Y. Z.; Liu, J.; Yao, Z. Y.; Li, C. X.; Wan, X. J. et al. A large area organic solar module with non-halogen solvent treatment, high efficiency, and decent stability. Solar RRL 2023, 7, 2300029.

[8]

Zou, W. T.; Han, C. Y.; Zhang, X.; Qiao, J. W.; Yu, J. F.; Xu, H. J.; Gao, H. H.; Sun, Y. N.; Kan, Y. Y.; Hao, X. T. et al. A bithiazole-substituted donor for high-efficiency thick ternary organic solar cells via regulation of crystallinity and miscibility. Adv. Energy Mater. 2023, 13, 2300784.

[9]

Cui, Y.; Xu, Y.; Yao, H. F.; Bi, P. Q.; Hong, L.; Zhang, J. Q.; Zu, Y. F.; Zhang, T.; Qin, J. Z.; Ren, J. Z. et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021, 33, 2102420.

[10]

Xu, X. P.; Jing, W. W.; Meng, H. F.; Guo, Y. Y.; Yu, L. Y.; Li, R. P.; Peng, Q. Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells. Adv. Mater. 2023, 35, 2208997.

[11]

Han, C. Y.; Wang, J. X.; Zhang, S.; Chen, L. L.; Bi, F. Z.; Wang, J. J.; Yang, C. M.; Wang, P. C.; Li, Y. H.; Bao, X. C. Over 19% efficiency organic solar cells by regulating multidimensional intermolecular interactions. Adv. Mater. 2023, 35, 2208986.

[12]

Xiao, C.; Wang, X. C.; Zhong, T.; Zhou, R. X.; Zheng, X. F.; Liu, Y. R.; Hu, T. Y.; Luo, Y. X.; Sun, F. B.; Xiao, B. et al. Hybrid cycloalkyl-alkyl chain-based symmetric/asymmetric acceptors with optimized crystal packing and interfacial exciton properties for efficient organic solar cells. Adv. Sci. 2023, 10, 2206580.

[13]

Chen, Z. Y.; Zhu, J. T.; Yang, D. B.; Song, W.; Shi, J. Y.; Ge, J. F.; Guo, Y. T.; Tong, X. Y.; Chen, F.; Ge, Z. Y. Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency. Energy Environ. Sci. 2023, 16, 3119–3127.

[14]

Chen, T. Y.; Li, S. X.; Li, Y. K.; Chen, Z.; Wu, H. T.; Lin, Y.; Gao, Y.; Wang, M. T.; Ding, G. Y.; Min, J. et al. Compromising charge generation and recombination of organic photovoltaics with mixed diluent strategy for certified 19.4% efficiency. Adv. Mater. 2023, 35, 2300400.

[15]

Fan, B. B.; Zhong, W. K.; Gao, W.; Fu, H. T.; Lin, F. R.; Wong, R. W. Y.; Liu, M.; Zhu, C. H.; Wang, C.; Yip, H. L. et al. Understanding the role of removable solid additives: Selective interaction contributes to vertical component distributions. Adv. Mater. 2023, 35, 2302861.

[16]

Liu, K. R.; Jiang, Y. Y.; Liu, F.; Ran, G. L.; Huang, F.; Wang, W. X.; Zhang, W. K.; Zhang, C.; Hou, J. H.; Zhu, X. Z. Organic solar cells with over 19% efficiency enabled by a 2D-conjugated non-fullerene acceptor featuring favorable electronic and aggregation structures. Adv. Mater. 2023, 35, 2300363.

[17]

Jia, Z. R.; Ma, Q.; Chen, Z.; Meng, L.; Jain, N.; Angunawela, I.; Qin, S. C.; Kong, X. L.; Li, X. J.; Yang, Y. et al. Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells. Nat. Commun. 2023, 14, 1236.

[18]

Zheng, Z.; Wang, J. Q.; Bi, P. Q.; Ren, J. Z.; Wang, Y. F.; Yang, Y.; Liu, X. Y.; Zhang, S. Q.; Hou, J. H. Tandem organic solar cell with 20.2% efficiency. Joule 2022, 6, 171–184.

[19]

Fu, J. H.; Fong, P. W. K.; Liu, H.; Huang, C. S.; Lu, X. H.; Lu, S. R.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C. M.; Yang, Y. et al. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 2023, 14, 1760

[20]

Liu, C. Y.; Wu, Z. H.; Qiu, N. L.; Li, C. X.; Lu, Y. Selenophene-containing small-molecule donor with a medium band gap enables high-efficiency ternary organic solar cells. ACS Appl. Mater. Interfaces 2023, 15, 9764–9772.

[21]

Zou, Y. L.; Chen, H. B.; Bi, X. Q.; Xu, X. Y.; Wang, H. B.; Lin, M. L.; Ma, Z. F.; Zhang, M. T.; Li, C. X.; Wan, X. J. et al. Peripheral halogenation engineering controls molecular stacking to enable highly efficient organic solar cells. Energy Environ. Sci. 2022, 15, 3519–3533.

[22]

Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

[23]

Liang, H. Z.; Chen, H. B.; Wang, P. R.; Zhu, Y.; Zhang, Y. X.; Feng, W. Y.; Ma, K. Q.; Lin, Y.; Ma, Z. F.; Long, G. K. et al. Molecular packing and dielectric property optimization through peripheral halogen swapping enables binary organic solar cells with an efficiency of 18.77%. Adv. Funct. Mater. 2023, 33, 2301573.

[24]

Lv, J.; Yang, Q. G.; Deng, W. Y.; Chen, H. Y.; Kumar, M.; Zhao, F. Q.; Lu, S. R.; Hu, H. L.; Kan, Z. P. Isomeric acceptors incorporation enables 18.1% efficiency ternary organic solar cells with reduced trap-assisted charge recombination. Chem. Eng. J. 2023, 465, 142822.

[25]

Shao, Y. M.; Gao, Y.; Sun, R.; Zhang, M. M.; Min, J. A versatile and low-cost polymer donor based on 4-chlorothiazole for highly efficient polymer solar cells. Adv. Mater. 2023, 35, 2208750.

[26]

Zhang, Z. L.; Wu, J. N.; Lin, J.; Zhang, R.; Lv, J. F.; Yu, L. F.; Guo, X.; Zhang, M. J. Enhancing intermolecular packing and light harvesting through asymmetric non-fullerene acceptors for achieving 18.7% efficiency ternary organic solar cells. J. Mater. Chem. A 2023, 11, 15553–15560.

[27]

Huang, T. H.; Zhang, Z. L.; Wang, D. J.; Zhang, Y.; Deng, Z. Q.; Huang, Y.; Liao, Q. G.; Zhang, J. 18.7% efficiency ternary organic solar cells using two non-fullerene acceptors with excellent compatibility. ACS Appl. Energy Mater. 2023, 6, 3126–3134

[28]

Meng, L. X.; Zhang, Y. M.; Wan, X. J.; Li, C. X.; Zhang, X.; Wang, Y. B.; Ke, X.; Xiao, Z.; Ding, L. M.; Xia, R. X. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098.

[29]

Zhang, C.; Zhang, M.; Zhou, Q. J.; Chen, S. S.; Kim, S.; Yao, J.; Zhang, Z.; Bai, Y.; Chen, Q.; Chang, B. W. et al. Diffusion-limited accepter alloy enables highly efficient and stable organic solar cells. Adv. Funct. Mater. 2023, 33, 2214392.

[30]

Zhan, L. L.; Li, S. X.; Li, Y. K.; Sun, R.; Min, J.; Chen, Y. Y.; Fang, J.; Ma, C. Q.; Zhou, G. Q.; Zhu, H. M. et al. Manipulating charge transfer and transport via intermediary electron acceptor channels enables 19.3% efficiency organic photovoltaics. Adv. Energy Mater. 2022, 12, 2201076.

[31]

Meng, F.; Qin, Y.; Zheng, Y. T.; Zhao, Z. H.; Sun, Y. N.; Yang, Y. G.; Gao, K.; Zhao, D. B. Structural fusion yields guest acceptors that enable ternary organic solar cells with 18.77 % efficiency. Angew. Chem., Int. Ed. 2023, 62, e202217173.

[32]

Chen, Z. H.; Yao, H. F.; Wang, J. W.; Zhang, J. Q.; Zhang, T.; Li, Z.; Qiao, J. W.; Xiu, S.; Hao, X. T.; Hou, J. H. Restrained energetic disorder for high-efficiency organic solar cells via a solid additive. Energy Environ. Sci. 2023, 16, 2637–2645.

[33]

Li, Y.; Cai, Y. H.; Xie, Y. P.; Song, J. H.; Wu, H. B.; Tang, Z.; Zhang, J.; Huang, F.; Sun, Y. M. A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells. Energy Environ. Sci. 2021, 14, 5009–5016.

[34]

Liu, G. C.; Xia, R. X.; Huang, Q. R.; Zhang, K.; Hu, Z. C.; Jia, T.; Liu, X.; Yip, H. L.; Huang, F. Tandem organic solar cells with 18.7% efficiency enabled by suppressing the charge recombination in front sub-cell. Adv. Funct. Mater. 2021, 31, 2103283.

[35]

Sun, Y. N.; Nian, L.; Kan, Y. Y.; Ren, Y.; Chen, Z. H.; Zhu, L.; Zhang, M.; Yin, H.; Xu, H. J.; Li, J. F. et al. Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule 2022, 6, 2835–2848.

[36]

Zhang, C. Y.; Li, J.; Deng, W. Y.; Dai, J. P.; Yu, J. F.; Lu, G. H.; Hu, H. L.; Wang, K. 18.9% Efficiency ternary organic solar cells enabled by isomerization engineering of chlorine-substitution on small molecule donors. Adv. Funct. Mater. 2023, 33, 2301108.

[37]

Ma, R. J.; Zhou, K. K.; Sun, Y. N.; Liu, T.; Kan, Y. Y.; Xiao, Y. Q.; Dela Peña, T. A.; Li, Y. X.; Zou, X. H.; Xing, Z. S. et al. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter 2022, 5, 725–734.

[38]

Yan, X.; Wu, J. N.; Lv, J. F.; Zhang, L.; Zhang, R.; Guo, X.; Zhang, M. J. Highly efficient ternary solar cells with reduced non-radiative energy loss and enhanced stability via two compatible non-fullerene acceptors. J. Mater. Chem. A 2022, 10, 15605–15613.

[39]

Cai, Y. H.; Li, Y.; Wang, R.; Wu, H. B.; Chen, Z. H.; Zhang, J.; Ma, Z. F.; Hao, X. T.; Zhao, Y.; Zhang, C. F. et al. A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%. Adv. Mater. 2021, 33, 2101733.

[40]

Duan, T. N.; Feng, W. Y.; Li, Y. L.; Li, Z. X.; Zhang, Z.; Liang, H. Z.; Chen, H. B.; Zhong, C.; Jeong, S.; Yang, C. et al. Electronic configuration tuning of centrally extended non-fullerene acceptors enabling organic solar cells with efficiency approaching 19%. Angew. Chem., Int. Ed. 2023, 62, e202308832.

[41]

Wan, J.; Wu, Y.; Sun, R.; Qiao, J. W.; Hao, X. T.; Min, J. An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency. Energy Environ. Sci. 2022, 15, 5192–5201.

[42]

Zhou, M. W.; Liao, C. T.; Duan, Y. W.; Xu, X. P.; Yu, L. Y.; Li, R. P.; Peng, Q. 19.10% efficiency and 80.5% fill factor layer-by-layer organic solar cells realized by 4-bis(2-thienyl)pyrrole-2,5-dione based polymer additives for inducing vertical segregation morphology. Adv. Mater. 2023, 35, 2208279

[43]

Wen, J.; Lin, H.; Yu, X.; Li, M. L.; Du, X. Y.; Luo, J. Y.; Yang, G.; Zheng, C. J.; Tao, S. L. Efficient and stable ternary organic solar cells using liquid crystal small molecules with multiple synergies. ACS Appl. Energy Mater. 2022, 5, 12809–12816.

[44]

Li, X. F.; Meng, H. F.; Shen, F. G.; Su, D.; Huo, S. Y.; Shan, J. H.; Huang, J. H.; Zhan, C. L. Semitransparent fullerene-free polymer solar cell with 44% AVT and 7% efficiency based on a new chlorinated small molecule acceptor. Dyes Pigm. 2019, 166, 196–202.

[45]

Qiu, N. L.; Liu, C. Y.; Lang, H. J.; Xu, J. Y.; Su, R.; Jiang, J.; Tian, J. Q.; Li, J. S. Efficient all-small-molecule organic solar cells based on a fluorinated small-molecule donor. New J. Chem. 2022, 46, 8500–8506.

[46]

Rau, U.; Blank, B.; Müller, T. C. M.; Kirchartz, T. Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 2017, 7, 044016.

[47]

Wang, Y. M.; Qian, D. P.; Cui, Y.; Zhang, H. T.; Hou, J. H.; Vandewal, K.; Kirchartz, T.; Gao, F. Optical gaps of organic solar cells as a reference for comparing voltage losses. Adv. Energy Mater. 2018, 8, 1801352.

[48]

Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. Relating the open-circuit voltage to interface molecular properties of donor: Acceptor bulk heterojunction solar cells. Phys. Rev. B 2010, 81, 125204.

Nano Research
Pages 4062-4068
Cite this article:
Liu C, Qiu N, Li Z, et al. A new nonfullerene acceptor with an extended π conjugation core enables ternary organic solar cells approaching 19% efficiency. Nano Research, 2024, 17(5): 4062-4068. https://doi.org/10.1007/s12274-023-6293-7
Topics:

631

Views

3

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 02 October 2023
Revised: 26 October 2023
Accepted: 27 October 2023
Published: 04 December 2023
© Tsinghua University Press 2023
Return