AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanoconfinement-induced water molecules and hydrogen molecules transport behaviors in ball-in-ball structure photocatalysts to improve hydrogen evolution

Ben ChongBaorong XuHe LiHonghui OuGuidong Yang( )
XJTU-Oxford Joint International Research Laboratory of Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Show Author Information

Graphical Abstract

The fabricated amino-functionalized CdS@SiO2-NH2 nanoreactor promotes water molecules’ and hydrogen molecules’ directional diffusion and transfer along the nanochannels. As a result, the improved mass transfer/diffusion behaviors and decreased hydrogen-occupied active sites lead to superior photocatalytic H2 generation performance.

Abstract

The diffusion, adsorption/desorption behaviors of water molecules and hydrogen molecules are of great importance in heterogeneous photocatalytic hydrogen production. In the study of structure–property–performance relationships, nanoconfined space provides an ideal platform to promote mass diffusion and transfer due to their extraordinary properties that are different from the bulk systems. Herein, we designed and prepared a nanoconfined CdS@SiO2-NH2 nanoreactor, whose shell is composed of amino-functionalized silica nanochannels, and encapsulates spherical CdS as a photocatalyst inside. Experimental and simulated results reveal that the amino-functionalized nanochannels promote water molecules’ and hydrogen molecules’ directional diffusion and transport. Water molecules are enriched in the nanocavity between the core and the shell, and promote the interfacial photocatalytic reaction. As a result, the maximized water enrichment and minimized hydrogen-occupied active sites enable photocatalyst with optimized mass transfer kinetics and localization electron distribution on the CdS surface, leading to superior hydrogen production performance with activity as high as 37.1 mmol·g−1·h−1.

Electronic Supplementary Material

Download File(s)
12274_2023_6300_MOESM1_ESM.pdf (4.4 MB)

References

[1]

Shen, J.; Wang, D. S. How to select heterogeneous CO2 reduction electrocatalyst. Nano Res. Energy 2024, 3, e9120096.

[2]

Cui, T. T.; Li, L. X.; Ye, C. L.; Li, X. Y.; Liu, C. X.; Zhu, S. H.; Chen, W.; Wang, D. S. Heterogeneous single atom environmental catalysis: Fundamentals, applications, and opportunities. Adv. Funct. Mater. 2022, 32, 2108381.

[3]

Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Y. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.

[4]

Bie, C. B.; Wang, L. X.; Yu, J. G. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567–1574.

[5]

Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

[6]

Yu, M. Y.; Wang, T. Y.; Huang, C. X.; Wu, F.; Liu, X.; Huo, H. L.; Jian, H. W.; Liang, Z. K.; Ma, J. J.; Kan, E. J. et al. Enhanced charge separation by continuous homojunction with spatially separated redox sites for hydrogen evolution. Nano Res. 2023, 16, 12323–12330.

[7]

Shi, L.; Meng, S.; Jungsuttiwong, S.; Namuangruk, S.; Lu, Z. H.; Li, L.; Zhang, R. B.; Feng, G.; Qing, S. J.; Gao, Z. X. et al. High coverage H2O adsorption on CuAl2O4 surface: a DFT study. Appl. Surf. Sci. 2020, 507, 145162.

[8]

Yu, X. H.; Zhang, X. M.; Wang, H. T.; Feng, G. High coverage water adsorption on the CuO(111) surface. Appl. Surf. Sci. 2017, 425, 803–810.

[9]

Yu, X. H.; Zhang, X. M.; Wang, S. G.; Feng, G. A computational study on water adsorption on Cu2O(111) surfaces: The effects of coverage and oxygen defect. Appl. Surf. Sci. 2015, 343, 33–40.

[10]

Martinez-Casado, R.; Mallia, G.; Harrison, N. M.; Pérez, R. First-principles study of the water adsorption on anatase(101) as a function of the coverage. J. Phys. Chem. C 2018, 122, 20736–20744.

[11]

Noy, A.; Park, H. G.; Fornasiero, F.; Holt, J. K.; Grigoropoulos, C. P.; Bakajin, O. Nanofluidics in carbon nanotubes. Nano Today 2007, 2, 22–29.

[12]

Furukawa, H.; Gándara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369–4381.

[13]

Zhang, M. C.; Zhao, P. X.; Li, P. S.; Ji, Y. F.; Liu, G. P.; Jin, W. Q. Designing biomimic two-dimensional ionic transport channels for efficient ion sieving. ACS Nano 2021, 15, 5209–5220.

[14]

Li, X. Y.; Zhang, H. C.; Yu, H.; Xia, J.; Zhu, Y. B.; Wu, H. A.; Hou, J.; Lu, J.; Ou, R. W.; Easton, C. D. et al. Unidirectional and selective proton transport in artificial heterostructured nanochannels with nano-to-subnano confined water clusters. Adv. Mater. 2020, 32, 2001777.

[15]

Liu, Y. W.; Wu, X.; Li, Z.; Zhang, J.; Liu, S. X.; Liu, S. J.; Gu, L.; Zheng, L. R.; Li, J.; Wang, D. S. et al. Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nat. Commun. 2021, 12, 4205.

[16]

Zhao, J. B.; Yuan, H. F.; Yang, G.; Liu, Y. F.; Qin, X. M.; Chen, Z.; Weng-Chon, C.; Zhou, L. M.; Fang, S. M. AuPt bimetallic nanoalloys supported on SBA-15: A superior catalyst for quinoline selective hydrogenation in water. Nano Res. 2022, 15, 1796–1802.

[17]

Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita, H. Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications. Nanoscale 2020, 12, 11333–11363.

[18]

Liu, F. J.; Huang, K.; Wu, Q.; Dai, S. Solvent-free self-assembly to the synthesis of nitrogen-doped ordered mesoporous polymers for highly selective capture and conversion of CO2. Adv. Mater. 2017, 29, 1700445.

[19]

Peng, S. S.; Shao, X. B.; Li, Y. X.; Jiang, Y.; Gu, C.; Dinker, M. K.; Liu, X. Q.; Sun, L. B. Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks. Nano Res. 2022, 15, 2905–2912.

[20]

Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.

[21]

Lou, F. J.; Zhang, G. H.; Ren, L. M.; Guo, X. W.; Song, C. S. Impacts of nano-scale pore structure and organic amine assembly in porous silica on the kinetics of CO2 adsorptive separation. Nano Res. 2021, 14, 3294–3302.

[22]

Dong, C. C.; Ji, J. H.; Yang, Z.; Xiao, Y. F.; Xing, M. Y.; Zhang, J. L. Research progress of photocatalysis based on highly dispersed titanium in mesoporous SiO2. Chin. Chem. Lett. 2019, 30, 853–862.

[23]

Li, Z. K.; Zhang, L.; Guo, L. H.; Hu, W. W.; Yu, A. F.; Zhai, J. Y. Manipulating functional groups between polyvinylidene difluoride and nanoparticles for high-performance triboelectric nanogenerator. Nano Res. 2023, 16, 11855–11861.

[24]

Wang, Y. Y.; Wang, Z. J.; Zhao, L.; Fan, Q. N.; Zeng, X. H.; Liu, S. L.; Pang, W. K.; He, Y. B.; Guo, Z. P. Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv. Mater. 2021, 33, 2008133.

[25]

Wang, X. X.; Fujii, M.; Wang, X. X.; Song, C. S. New approach to enhance CO2 capture of “molecular basket” sorbent by using 3-aminopropyltriethoxysilane to reshape fumed silica support. Ind. Eng. Chem. Res. 2020, 59, 7267–7273.

[26]

Caicedo, D. F.; dos Reis, G. S.; Lima, E. C.; De Brum, I. A. S.; Thue, P. S.; Cazacliu, B. G.; Lima, D. R.; dos Santos, A. H.; Dotto, G. L. Efficient adsorbent based on construction and demolition wastes functionalized with 3-aminopropyltriethoxysilane (APTES) for the removal ciprofloxacin from hospital synthetic effluents. J. Environ. Chem. Eng. 2020, 8, 103875.

[27]

Otitoju, T. A.; Ooi, B. S.; Ahmad, A. L. Synthesis of 3-aminopropyltriethoxysilane-silica modified polyethersulfone hollow fiber membrane for oil-in-water emulsion separation. React. Funct. Polym. 2019, 136, 107–121.

[28]

Hu, Y.; Wang, S.; He, Y. R. Interaction of amino acid functional group with water molecule on methane hydrate growth. J. Nat. Gas Sci. Eng. 2021, 93, 104066.

[29]

Wang, C.; Leng, S. Z.; Xu, Y.; Tian, Q. Y.; Zhang, X. M.; Cao, L. Y.; Huang, J. F. Preparation of amino functionalized hydrophobic zeolite and its adsorption properties for chromate and naphthalene. Minerals 2018, 8, 145.

[30]

Song, H. L.; Peng, Y.; Wang, C. L.; Shu, L.; Zhu, C. Y.; Wang, Y. L.; He, H. Y.; Yang, W. S. Structure regulation of MOF nanosheet membrane for accurate H2/CO2 separation. Angew. Chem., Int. Ed. 2023, 62, e202218472.

[31]

Yuan, P.; Southon, P. D.; Liu, Z. W.; Green, M. E. R.; Hook, J. M.; Antill, S. J.; Kepert, C. J. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J. Phys. Chem. C 2008, 112, 15742–15751.

[32]

Peña-Alonso, R.; Rubio, F.; Rubio, J.; Oteo, J. L. Study of the hydrolysis and condensation of γ-aminopropyltriethoxysilane by FT-IR spectroscopy. J. Mater. Sci. 2007, 42, 595–603.

[33]

Wang, W. Y.; Wu, Y.; Liu, T. Y.; Zhao, Y. F.; Qu, Y. T.; Yang, R. O.; Xue, Z. G.; Wang, Z. Y.; Zhou, F. Y.; Long, J. P. et al. Single Co sites in ordered SiO2 channels for boosting nonoxidative propane dehydrogenation. ACS Catal. 2022, 12, 2632–2638.

[34]

Xu, X. Y.; Bao, Z. J.; Zhou, G.; Zeng, H. B.; Hu, J. G. Enriching photoelectrons via three transition channels in amino-conjugated carbon quantum dots to boost photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 2016, 8, 14118–14124.

[35]

Majoul, N.; Aouida, S.; Bessaïs, B. Progress of porous silicon APTES-functionalization by FTIR investigations. Appl. Surf. Sci. 2015, 331, 388–391.

[36]

Murthy, V. S.; Cha, J. N.; Stucky, G. D.; Wong, M. S. Charge-driven flocculation of poly(L-lysine)-gold nanoparticle assemblies leading to hollow microspheres. J. Am. Chem. Soc. 2004, 126, 5292–5299.

[37]

Chen, S. S.; Wang, J.; Xin, B.; Yang, Y. B.; Ma, Y. R.; Zhou, Y.; Yuan, L. J.; Huang, Z. L.; Yuan, Q. Direct observation of nanoparticles within cells at subcellular levels by super-resolution fluorescence imaging. Anal. Chem. 2019, 91, 5747–5752.

[38]

Kaminski Schierle, G. S.; van de Linde, S.; Erdelyi, M.; Esbjörner, E. K.; Klein, T.; Rees, E.; Bertoncini, C. W.; Dobson, C. M.; Sauer, M.; Kaminski, C. F. In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging. J. Am. Chem. Soc. 2011, 133, 12902–12905.

[39]

Yan, J.; Zhao, L. X.; Li, C.; Hu, Z.; Zhang, G. F.; Chen, Z. Q.; Chen, T.; Huang, Z. L.; Zhu, J. T.; Zhu, M. Q. Optical nanoimaging for block copolymer self-assembly. J. Am. Chem. Soc. 2015, 137, 2436–2439.

Nano Research
Pages 3752-3760
Cite this article:
Chong B, Xu B, Li H, et al. Nanoconfinement-induced water molecules and hydrogen molecules transport behaviors in ball-in-ball structure photocatalysts to improve hydrogen evolution. Nano Research, 2024, 17(5): 3752-3760. https://doi.org/10.1007/s12274-023-6300-z
Topics:

794

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 September 2023
Revised: 18 October 2023
Accepted: 30 October 2023
Published: 12 December 2023
© Tsinghua University Press 2023
Return