Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Effective electrochemical conversion of CO2 to value-added liquid multi-carbon products driven by renewable energy is a promising approach to alleviate excessive CO2 emission and achieve large-scale renewable energy storage. However, the selectivity and catalytic activity towards liquid multi-carbon products of CO2 electroreduction reaction are still unsatisfactory due to the sluggish C–C coupling process and the formation of complex oxygen-containing intermediates. Hence, designing and fabricating highly effective electrocatalysts is crucial for practical applications in this field. Here, we developed Cl-modified Cu catalyst (Cu-Cl) for efficient electrochemical reduction of CO2 to ethanol. The optimal Faradaic efficiency and partial current density of ethanol on the Cu-Cl sample reached 26.2% and 343.2 mA·cm−2 at −0.74 V (vs. reversible hydrogen electrode (RHE)), which were 1.66 and 1.76 times higher than those of the catalyst without Cl decoration, outperforming those in most previously reported works. Density functional theory (DFT) calculations revealed that the Cl-modified Cu surface suppressed the parasitic hydrogen evolution reaction (HER) and reduced the energy barrier for the C–C coupling process, making the formation of key intermediates favorable for ethanol production. Thus, the decoration of Cl on the Cu surface facilitated ethanol formation.
Hansen, J.; Kharecha, P.; Sato, M.; Masson-Delmotte, V.; Ackerman, F.; Beerling, D. J.; Hearty, P. J.; Hoegh-Guldberg, O.; Hsu, S. L.; Parmesan, C. et al. Assessing “dangerous climate change”: Required reduction of carbon emissions to protect young people, future generations and nature. PLoS One 2013, 8, e81648.
Hoffert, M. I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; Jain, A. K.; Kheshgi, H. S.; Lackner, K. S.; Lewis, J. S. et al. Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science 2002, 298, 981–987.
Chen, A. Q.; Lin, B. L. A simple framework for quantifying electrochemical CO2 fixation. Joule 2018, 2, 594–606.
Wang, Y. F.; Han, P.; Lv, X. M.; Zhang, L. J.; Zheng, G. F. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018, 2, 2551–2582.
De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.
Qian, Y.; Liu, Y. F.; Tang, H. H.; Lin, B. L. Highly efficient electroreduction of CO2 to formate by nanorod@2D nanosheets SnO. J. CO2 Util. 2020, 42, 101287.
Xiao, Y. J.; Qian, Y.; Chen, A. Q.; Qin, T.; Zhang, F.; Tang, H. H.; Qiu, Z. T.; Lin, B. L. An artificial photosynthetic system with CO2-reducing solar-to-fuel efficiency exceeding 20%. J. Mater. Chem. A 2020, 8, 18310–18317.
Tang, H. H.; Zhou, Y. T.; Liu, Y. F.; Qian, Y.; Qiu, Z. T.; Chen, A. Q.; Lin, B. L. Rationally designed hierarchical carbon supported CuO nano-sheets for highly efficient electroreduction of CO2 to multi-carbon products. J. CO2 Util. 2023, 67, 102320.
Zhou, Q. C.; Tang, X. N.; Qiu, S. H.; Wang, L. Y.; Hao, L. N.; Yu, Y. Stable CuIn alloy for electrochemical CO2 reduction to CO with high-selectivity. Mater. Today Phys. 2023, 33, 101050.
Herzog, A.; Bergmann, A.; Jeon, H. S.; Timoshenko, J.; Kuhl, S.; Rettenmaier, C.; Lopez Luna, M.; Haase, F. T.; Roldan Cuenya, B. Operando investigation of Ag-decorated Cu2O nanocube catalysts with enhanced CO2 electroreduction toward liquid products. Angew. Chem., Int. Ed. 2021, 60, 7426–7435.
Li, Y. C.; Wang, Z. Y.; Yuan, T. G.; Nam, D. H.; Luo, M. C.; Wicks, J.; Chen, B.; Li, J.; Li, F. W.; de Arquer, F. P. G. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 2019, 141, 8584–8591.
Tang, H. H.; Liu, Y. F.; Zhou, Y. T.; Qian, Y.; Lin, B. L. Boosting the electroreduction of CO2 to ethanol via the synergistic effect of Cu–Ag bimetallic catalysts. ACS Appl. Energy Mater. 2022, 5, 14045–14052.
Yuan, J.; Yang, M. P.; Zhi, W. Y.; Wang, H.; Wang, H.; Lu, J. X. Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts. J. CO2 Util. 2019, 33, 452–460.
Liang, Z. Q.; Zhuang, T. T.; Seifitokaldani, A.; Li, J.; Huang, C. W.; Tan, C. S.; Li, Y.; De Luna, P.; Dinh, C. T.; Hu, Y. F. et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun. 2018, 9, 3828.
Raciti, D.; Wang, C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 2018, 3, 1545–1556.
Liu, S.; Zhang, B. S.; Zhang, L. H.; Sun, J. Rational design strategies of Cu-based electrocatalysts for CO2 electroreduction to C2 products. J. Energy Chem. 2022, 71, 63–82.
Jia, Y. F.; Li, F.; Fan, K.; Sun, L. C. Cu-based bimetallic electrocatalysts for CO2 reduction. Adv. Powder Mater. 2022, 1, 100012.
Xiang, D.; Li, K. Z.; Li, M. Z.; Long, R.; Xiong, Y. J.; Yakhvarov, D.; Kang, X. W. Theory-guided synthesis of heterostructured Cu@Cu0.4W0.6 catalyst towards superior electrochemical reduction of CO2 to C2 products. Mater. Today Phys. 2023, 33, 101045.
Niu, Z. Z.; Chi, L. P.; Liu, R.; Chen, Z.; Gao, M. R. Rigorous assessment of CO2 electroreduction products in a flow cell. Energy Environ. Sci. 2021, 14, 4169–4176.
Su, W. Y.; Ma, L. S.; Cheng, Q. Q.; Wen, K.; Wang, P. F.; Hu, W. B.; Zou, L. L.; Fang, J. H.; Yang, H. Highly dispersive trace silver decorated Cu/Cu2O composites boosting electrochemical CO2 reduction to ethanol. J. CO2 Util. 2021, 52, 101698.
Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659.
Li, M. H.; Song, N.; Luo, W.; Chen, J.; Jiang, W.; Yang, J. P. Engineering surface oxophilicity of copper for electrochemical CO2 reduction to ethanol. Adv. Sci. 2023, 10, 2204579.
Yang, T. H.; Kuang, M.; Yang, J. P. Tandem engineering for CO2 electrolysis toward multicarbon products. Nano Res. 2023, 16, 8670–8683.
Wang, L. M.; Chen, W. L.; Zhang, D. D.; Du, Y. P.; Amal, R.; Qiao, S. Z.; Wu, J. B.; Yin, Z. Y. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349.
Ogura, K.; Yano, H.; Shirai, F. Catalytic reduction of CO2 to ethylene by electrolysis at a three-phase interface. J. Electrochem. Soc. 2003, 150, D163–D168.
Yano, H.; Tanaka, T.; Nakayama, M.; Ogura, K. Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper(I) halide-confined Cu-mesh electrodes in acidic solutions of potassium halides. J. Electroanal. Chem. 2004, 565, 287–293.
Lee, S.; Kim, D.; Lee, J. Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O-Cu catalyst. Angew. Chem., Int. Ed. 2015, 54, 14701–14705.
Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.
Qin, T.; Qian, Y.; Zhang, F.; Lin, B. L. Cloride-derived copper electrode for efficient electrochemical reduction of CO2 to ethylene. Chin. Chem. Lett. 2019, 30, 314–318.
Li, M. H.; Ma, Y. Y.; Chen, J.; Lawrence, R.; Luo, W.; Sacchi, M.; Jiang, W.; Yang, J. P. Residual chlorine induced cationic active species on a porous copper electrocatalyst for highly stable electrochemical CO2 reduction to C2+. Angew. Chem., Int. Ed. 2021, 60, 11487–11493.
McCrum, I. T.; Akhade, S. A.; Janik, M. J. Electrochemical specific adsorption of halides on Cu 111, 100, and 211: A density functional theory study. Electrochim. Acta 2015, 173, 302–309.
Akhade, S. A.; McCrum, I. T.; Janik, M. J. The impact of specifically adsorbed ions on the copper-catalyzed electroreduction of CO2. J. Electrochem. Soc. 2016, 163, F477–F484.
Chen, C. S.; Handoko, A. D.; Wan, J. H.; Ma, L.; Ren, D.; Yeo, B. S. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal. Sci. Technol. 2015, 5, 161–168.
Gao, D. F.; Scholten, F.; Roldan Cuenya, B. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect. ACS Catal. 2017, 7, 5112–5120.
Wang, H.; Matios, E.; Wang, C. L.; Luo, J. M.; Lu, X.; Hu, X. F.; Li, W. Y. Rapid and scalable synthesis of cuprous halide-derived copper nano-architectures for selective electrochemical reduction of carbon dioxide. Nano Lett. 2019, 19, 3925–3932.
Kim, T.; Palmore, G. T. R. A scalable method for preparing Cu electrocatalysts that convert CO2 into C2+ products. Nat. Commun. 2020, 11, 3622.
Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050–7059.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Gao, D. F.; Zegkinoglou, I.; Divins, N. J.; Scholten, F.; Sinev, I.; Grosse, P.; Roldan Cuenya, B. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 2017, 11, 4825–4831.
Roberts, F. S.; Kuhl, K. P.; Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem., Int. Ed. 2015, 54, 5179–5182.
Liu, H.; Zhou, Y.; Kulinich, S. A.; Li, J. J.; Han, L. L.; Qiao, S. Z.; Du, X. W. Scalable synthesis of hollow Cu2O nanocubes with unique optical properties via a simple hydrolysis-based approach. J. Mater. Chem. A 2013, 1, 302–307.
Wu, H. H.; Li, H. B.; Zhao, X. F.; Liu, Q. F.; Wang, J.; Xiao, J. P.; Xie, S. H.; Si, R.; Yang, F.; Miao, S. et al. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ. Sci. 2016, 9, 3736–3745.
Yang, D. X.; Zhu, Q. G.; Chen, C. J.; Liu, H. Z.; Liu, Z. M.; Zhao, Z. J.; Zhang, X. Y.; Liu, S. J.; Han, B. X. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 2019, 10, 677.
Wang, Y. X.; Zhukovskyi, M.; Tongying, P.; Tian, Y.; Kuno, M. Synthesis of ultrathin and thickness-controlled Cu2- x Se nanosheets via cation exchange. J. Phys. Chem. Lett. 2014, 5, 3608–3613.
Zhang, J.; Yu, J. G.; Zhang, Y. M.; Li, Q.; Gong, J. R. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 2011, 11, 4774–4779.
Martić, N.; Reller, C.; Macauley, C.; Löffler, M.; Schmid, B.; Reinisch, D.; Volkova, E.; Maltenberger, A.; Rucki, A.; Mayrhofer, K. J. J. et al. Paramelaconite-enriched copper-based material as an efficient and robust catalyst for electrochemical carbon dioxide reduction. Adv. Energy Mater. 2019, 9, 1901228.
Kim, J.; Choi, W.; Park, J. W.; Kim, C.; Kim, M.; Song, H. Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 2019, 141, 6986–6994.
Qin, T.; Qian, Y.; Zhang, F.; Chen, A. Q.; Lin, B. L. Enhanced electrochemical reduction of CO2 to ethylene on electrodeposited copper in 0.1 M KHCO3. Int. J. Electrochem. Sci. 2018, 13, 10101–10112.
Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 2018, 140, 8681–8689.
Huang, Y.; Handoko, A. D.; Hirunsit, P.; Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: Effects of CO★ coverage on the selective formation of ethylene. ACS Catal. 2017, 7, 1749–1756.
Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.
Klingan, K.; Kottakkat, T.; Jovanov, Z. P.; Jiang, S.; Pasquini, C.; Scholten, F.; Kubella, P.; Bergmann, A.; Roldan Cuenya, B.; Roth, C. et al. Reactivity determinants in electrodeposited Cu foams for electrochemical CO2 reduction. ChemSusChem 2018, 11, 3449–3459.
Ren, D.; Wong, N. T.; Handoko, A. D.; Huang, Y.; Yeo, B. S. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 2016, 7, 20–24.
Jiang, S.; Klingan, K.; Pasquini, C.; Dau, H. New aspects of operando Raman spectroscopy applied to electrochemical CO2 reduction on Cu foams. J. Chem. Phys. 2019, 150, 041718.
Mandal, L.; Yang, K. R.; Motapothula, M. R.; Ren, D.; Lobaccaro, P.; Patra, A.; Sherburne, M.; Batista, V. S.; Yeo, B. S.; Ager, J. W. et al. Investigating the role of copper oxide in electrochemical CO2 reduction in real time. ACS Appl. Mater. Interfaces 2018, 10, 8574–8584.
Ghosh, S.; Manna, L. The Many “facets” of halide ions in the chemistry of colloidal inorganic nanocrystals. Chem. Rev. 2018, 118, 7804–7864.
Masana, J. J.; Peng, B. W.; Shuai, Z. Y.; Qiu, M.; Yu, Y. Influence of halide ions on the electrochemical reduction of carbon dioxide over a copper surface. J. Mater. Chem. A 2022, 10, 1086–1104.
Andryushechkin, B. V.; Pavlova, T. V.; Eltsov, K. N. Adsorption of halogens on metal surfaces. Surf. Sci. Rep. 2018, 73, 83–115.
Lum, Y. W.; Cheng, T.; Goddard III, W. A.; Ager, J. W. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 2018, 140, 9337–9340.