Efficient, durable and economic electrocatalysts are crucial for commercializing water electrolysis technology. Herein, we report an advanced bifunctional electrocatalyst for alkaline water splitting by growing NiFe-layered double hydroxide (NiFe-LDH) nanosheet arrays on the conductive NiMo-based nanorods deposited on Ni foam to form a three-dimensional (3D) architecture, which exhibits exceptional performances for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In overall water splitting, only the low operation voltages of 1.45/1.61 V are required to reach the current density of 10/500 mA·cm−2, and the continuous water splitting at an industrial-level current density of 500 mA·cm−2 shows a negligible degradation (1.8%) of the cell voltage over 1000 h. The outstanding performance is ascribed to the synergism of the HER-active NiMo-based nanorods and the OER-active NiFe-LDH nanosheet arrays of the hybridized 3D architecture. Specifically, the dense NiFe-LDH nanosheet arrays enhance the local pH on cathode by retarding OH− diffusion and enlarge the electrochemically active surface area on anode, while the conductive NiMo-based nanorods on Ni foam much decrease the charge-transfer resistances of both electrodes. This study provides an efficient strategy to explore advanced bifunctional electrocatalysts for overall water splitting by rationally hybridizing HER- and OER-active components.
Yang, H. Y.; Driess, M.; Menezes, P. W. Self-supported electrocatalysts for practical water electrolysis. Adv. Energy Mater. 2021, 11, 2102074.
Li, X.; Zhao, L. L.; Yu, J. Y.; Liu, X. Y.; Zhang, X. L.; Liu, H.; Zhou, W. J. Water splitting: From electrode to green energy system. Nano-Micro Lett. 2020, 12, 131.
Hu, C. L.; Zhang, L.; Gong, J. L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645.
Xu, Q. C.; Zhang, J. H.; Zhang, H. X.; Zhang, L. Y.; Chen, L.; Hu, Y. J.; Jiang, H.; Li, C. Z. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ. Sci. 2021, 14, 5228–5259.
Bai, S.; Wang, C. M.; Deng, M. S.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. J. Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures. Angew. Chem., Int. Ed. 2014, 53, 12120–12124.
Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrO x /SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.
Chen, D.; Pu, Z. H.; Lu, R. H.; Ji, P. X.; Wang, P. Y.; Zhu, J. W.; Lin, C.; Li, H. W.; Zhou, X. G.; Hu, Z. Y. et al. Ultralow Ru loading transition metal phosphides as high‐efficient bifunctional electrocatalyst for a solar‐to‐hydrogen generation system. Adv. Energy Mater. 2020, 10, 2000814.
Gao, F.; Zhang, Y. P.; Wu, Z. Y.; You, H. M.; Du, Y. K. Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coord. Chem. Rev. 2021, 436, 213825.
Liu, J. W.; Yang, X. Q.; Si, F. Z.; Zhao, B.; Xi, X. A.; Wang, L.; Zhang, J. J.; Fu, X. Z.; Luo, J. L. Interfacial component coupling effects towards precise heterostructure design for efficient electrocatalytic water splitting. Nano Energy 2022, 103, 107753.
Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.
Zhao, Y.; Wei, S. Z.; Pan, K. M.; Dong, Z. L.; Zhang, B.; Wu, H. H.; Zhang, Q. B.; Lin, J. P.; Pang, H. Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chem. Eng. J. 2021, 421, 129645.
Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3− x Fe x )FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334
Yan, M. L.; Zhao, Z. Y.; Cui, P. X.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe,Ni)S2 core–shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.
Xu, S. R.; Yu, X.; Luo, L.; Li, W. J.; Du, Y. S.; Kong, Q. Q.; Wu, Q. Multiscale manipulating induced flexible heterogeneous V-NiFe2O4@Ni2P electrocatalyst for efficient and durable oxygen evolution reaction. Nano Res. 2022, 15, 4942–4949.
Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.
Yu, M. Q.; Budiyanto, E.; Tüysüz, H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202103824.
Chandrasekaran, S.; Khandelwal, M.; Dayong, F.; Sui, L.; Chung, J. S.; Misra, R. D. K.; Yin, P.; Kim, E. J.; Kim, W.; Vanchiappan, A. et al. Developments and perspectives on robust nano‐ and microstructured binder‐free electrodes for bifunctional water electrolysis and beyond. Adv. Energy Mater. 2022, 12, 2200409.
Wu, Y. Y.; Li, G. D.; Liu, Y. P.; Yang, L.; Lian, X. R.; Asefa, T.; Zou, X. X. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 2016, 26, 4839–4847.
Li, W. J.; Deng, Y. Q.; Luo, L.; Du, Y. S.; Cheng, X. H.; Wu, Q. Nitrogen-doped Fe2O3/NiTe2 as an excellent bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2023, 639, 416–423.
Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.
Ito, Y.; Ohto, T.; Hojo, D.; Wakisaka, M.; Nagata, Y.; Chen, L. H.; Hu, K. L.; Izumi, M.; Fujita, J. I.; Adschiri, T. Cooperation between holey graphene and NiMo alloy for hydrogen evolution in an acidic electrolyte. ACS Catal. 2018, 8, 3579–3586.
Jiang, P.; Yang, Y.; Shi, R. H.; Xia, G. L.; Chen, J. T.; Su, J. W.; Chen, Q. W. Pt-like electrocatalytic behavior of Ru-MoO2 nanocomposites for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 5475–5485.
Zhou, D. J.; Li, P. S.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W. F.; Sun, X. M.; Duan, X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790–8817.
Zhai, P. L.; Wang, C.; Zhao, Y. Y.; Zhang, Y. X.; Gao, J. F.; Sun, L. C.; Hou, J. G. Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat. Commun. 2023, 14, 1873.
Shin, H.; Xiao, H.; Goddard III, W. A . In silico discovery of new dopants for Fe-doped Ni oxyhydroxide (Ni1− x Fe x OOH) catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 6745–6748.
Xiang, Q.; Wang, J.; Miao, Q.; Tao, P.; Song, C.; Shang, W.; Deng, T.; Yin, Z.; Wu, J. Recent progress in self-supported nanoarrays with diverse substrates for water splitting and beyond. Mater. Today Nano 2021, 15, 100120.
Huang, C.; Chu, P. K. Recommended practices and benchmarking of foam electrodes in water splitting. Trends Chem. 2022, 4, 1065–1077.
Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827.
Meng, X.; Li, Z. Q.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Dai, Y.; Huang, B. B.; Cheng, H. F.; He, J. H. Enabling unassisted solar water splitting with concurrent high efficiency and stability by robust earth-abundant bifunctional electrocatalysts. Nano Energy 2023, 109, 108296.
Qian, G. F.; Chen, J. L.; Yu, T. Q.; Liu, J. C.; Luo, L.; Yin, S. B. Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 2021, 14, 20.
Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3− x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.
Lv, J. J.; Wang, L. M.; Li, R. S.; Zhang, K. Y.; Zhao, D. F.; Li, Y. Q.; Li, X. J.; Huang, X. B.; Wang, G. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline-amorphous NiFe-LDH for oxygen evolution reaction. ACS Catal. 2021, 11, 14338–14351.
Wang, B. R.; Jiao, S. H.; Wang, Z. S.; Lu, M. J.; Chen, D.; Kang, Y. T.; Pang, G. S.; Feng, S. H. Rational design of NiFe LDH@Ni3N nano/microsheet arrays as a bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2020, 8, 17202–17211.
Feng, X. T.; Jiao, Q. Z.; Chen, W. X.; Dang, Y. L.; Dai, Z.; Suib, S. L.; Zhang, J. T.; Zhao, Y.; Li, H. S.; Feng, C. H. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B: Environ. 2021, 286, 119869.
Luo, M.; Yang, J. T.; Li, X. G.; Eguchi, M.; Yamauchi, Y.; Wang, Z. L. Insights into alloy/oxide or hydroxide interfaces in Ni-Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chem. Sci. 2023, 14, 3400–3414.
Lu, X. Y.; Cai, M. M.; Zou, Z. H.; Huang, J. F.; Xu, C. L. A novel MoNi@Ni(OH)2 heterostructure with Pt-like and stable electrocatalytic activity for the hydrogen evolution reaction. Chem. Commun. 2020, 56, 1729–1732.
Faid, A. Y.; Barnett, A. O.; Seland, F.; Sunde, S. Tuning Ni-MoO2 catalyst-ionomer and electrolyte interaction for water electrolyzers with anion exchange membranes. ACS Appl. Energy Mater. 2021, 4, 3327–3340.
Fan, K.; Xie, W. F.; Li, J. Z.; Sun, Y. N.; Xu, P. C.; Tang, Y.; Li, Z. H.; Shao, M. F. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958.
Qin, F.; Zhao, Z. H.; Alam, M. K.; Ni, Y. Z.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z. F.; Wang, Z. M.; Bao, J. M. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 2018, 3, 546–554.
Li, A.; Zhang, L.; Wang, F. Z.; Zhang, L.; Li, L.; Chen, H. M.; Wei, Z. D. Rational design of porous Ni-Co-Fe ternary metal phosphides nanobricks as bifunctional electrocatalysts for efficient overall water splitting. Appl. Catal. B: Environ. 2022, 310, 121353.
Zhang, B.; Yang, F.; Liu, X. D.; Wu, N.; Che, S.; Li, Y. F. Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting. Appl. Catal. B: Environ. 2021, 298, 120494.
Zhai, P. L.; Zhang, Y. X.; Wu, Y. Z.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Sun, L. C.; Hou, J. G. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat. Commun. 2020, 11, 5462.
Shi, W. J.; Zhu, J. W.; Gong, L.; Feng, D.; Ma, Q. L.; Yu, J.; Tang, H. L.; Zhao, Y. F.; Mu, S. C. Fe-incorporated Ni/MoO2 hollow heterostructure nanorod arrays for high-efficiency overall water splitting in alkaline and seawater media. Small 2022, 18, 2205683.
Hu, F.; Yu, D. S.; Ye, M.; Wang, H.; Hao, Y. N.; Wang, L. Q.; Li, L. L.; Han, X. P.; Peng, S. J. Lattice‐matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe-O-Cu bridges. Adv. Energy Mater. 2022, 12, 2200067.
Luo, W. H.; Wang, Y.; Luo, L. X.; Gong, S.; Wei, M. N.; Li, Y. X.; Gan, X. P.; Zhao, Y. Y.; Zhu, Z. H.; Li, Z. Single-atom and bimetallic nanoalloy supported on nanotubes as a bifunctional electrocatalyst for ultrahigh-current-density overall water splitting. ACS Catal. 2022, 12, 1167–1179.
Li, Y. K.; Zhang, G.; Lu, W. T.; Cao, F. F. Amorphous Ni-Fe-Mo suboxides coupled with ni network as porous nanoplate array on nickel foam: A highly efficient and durable bifunctional electrode for overall water splitting. Adv. Sci. 2020, 7, 1902034.
Ma, H. B.; Chen, Z. W.; Wang, Z. L.; Singh, C. V.; Jiang, Q. Interface engineering of Co/CoMoN/NF heterostructures for high-performance electrochemical overall water splitting. Adv. Sci. 2022, 9, 2105313.
Zhang, Z. H.; Liu, X. H.; Wang, D.; Wan, H.; Zhang, Y.; Chen, G.; Zhang, N.; Ma, R. Z. Ruthenium composited NiCo2O4 spinel nanocones with oxygen vacancies as a high-efficient bifunctional catalyst for overall water splitting. Chem. Eng. J. 2022, 446, 137037.
Chen, Y. K.; Wang, Y. J.; Yu, J. Y.; Xiong, G. W.; Niu, H. S.; Li, Y.; Sun, D. H.; Zhang, X. L.; Liu, H.; Zhou, W. J. Underfocus laser induced Ni nanoparticles embedded metallic MoN microrods as patterned electrode for efficient overall water splitting. Adv. Sci. 2022, 9, 2105869.
Su, H.; Jiang, J.; Li, N.; Gao, Y. Q.; Ge, L. NiCu alloys anchored defect-rich NiFe layered double-hydroxides as efficient electrocatalysts for overall water splitting. Chem. Eng. J. 2022, 446, 137226.
Hu, Y.; Luo, Z. Y.; Guo, M.; Dong, J. X.; Yan, P. X.; Hu, C.; Isimjan, T. T.; Yang, X. L. Interface engineering of Co2N0.67/CoMoO4 heterostructure nanosheets as a highly active electrocatalyst for overall water splitting and Zn-H2O cell. Chem. Eng. J. 2022, 435, 134795.