Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Biomimetic leaf structures for ultra-thin electromagnetic wave absorption

Shikun Hou1,2Ying Wang1,3()Feng Gao1()Fei Jin1Benfeng Zhu1Qiong Wu1Hongliang Ge1Zhihai Cao3Hua Yang1()
Magnetism Key Laboratory of Zhejiang Province & College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
Show Author Information

Graphical Abstract

View original image Download original image
Drawing inspiration from leaf structures, a novel ultra-thin electromagnetic wave-absorbing material is developed. This biomimetic material exhibits exceptional performance, highlighting the significance of its leaf-inspired structures in absorption mechanisms.

Abstract

Ultra-thin electromagnetic wave (EMW) absorbers present challenging demands on EMW absorption performance. Drawing inspiration from heather leaf structures, this study introduces an innovative design strategy for EMW absorbing material, proposing biomimetic leaf SnO2 structures (bio-SnO2) on carbon fabric (CF). By employing leaf-shaped SnS2 as precursors, biomimetic leaf SnO2 nanostructures are constructed on CF surface after a simple thermal treatment, resulting in bio-SnO2@CF composite. Experimental results indicate that bio-SnO2@CF exhibits an exceptional minimum reflection loss of −54.8 dB at an incredibly thin thickness of 1.2 mm. Radar cross section (RCS) simulations further validate the outstanding EMW attenuation ability of bio-SnO2@CF, attaining a maximum RCS reduction value of 16.9 dBm2 at an incident wave angle of θ = 0°. This novel research showcases the biomimetic structural design strategy and its remarkable function in enhancing the EMW absorbing performance at ultra-thin absorber thickness.

Electronic Supplementary Material

Download File(s)
12274_2023_6305_MOESM1_ESM.pdf (3.2 MB)

References

[1]

Zhang, C.; Shi, Y. N.; Li, X. A.; Wu, H. J.; Shen, Y. F.; Guo, W. C.; Tian, K. S.; Wang, H. Y. Architecture inspired structure engineering toward carbon nanotube hybrid for microwave absorption promotion. iScience 2022, 25, 105203.

[2]

Liu, J. L.; Zhang, L. M.; Wu, H. J. Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2200544.

[3]

Tao, J. Q.; Xu, L. L.; Pei, C. B.; Gu, Y. S.; He, Y. R.; Zhang, X. F.; Tao, X. W.; Zhou, J. T.; Yao, Z. J.; Tao, S. F. et al. Catfish effect induced by anion sequential doping for microwave absorption. Adv. Funct. Mater. 2023, 33, 2211996.

[4]

Zhao, H. H.; Wang, F. Y.; Cui, L. R.; Xu, X. Z.; Han, X. J.; Du, Y. C. Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: A review. Nano-Micro Lett. 2021, 13, 208.

[5]

Li, J. F.; Zhang, N.; Zhao, H. T.; Li, Z. G.; Tian, B.; Du, Y. C. Cornstalk-derived macroporous carbon materials with enhanced microwave absorption. J. Mater. Sci.: Mater. Electron. 2021, 32, 25758–25768.

[6]

Liu, D. W.; Du, Y. C.; Xu, P.; Wang, F. Y.; Wang, Y. H.; Cui, L. R.; Zhao, H. H.; Han, X. J. Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 2021, 9, 5086–5096.

[7]

Wu, Y. H.; Tan, S. J.; Liu, P. Y.; Zhang, Y.; Li, P.; Ji, G. B. Controllable heterogeneous interfaces and dielectric regulation of hollow raspberry-shaped Fe3O4@rGO hybrids for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 151, 10–18.

[8]

Niu, H. H.; Tu, X. Y.; Zhang, S.; Li, Y. Y.; Wang, H. L.; Shao, G.; Zhang, R.; Li, H. X.; Zhao, B.; Fan, B. B. Engineered core-shell SiO2@Ti3C2T x composites: Towards ultra-thin electromagnetic wave absorption materials. Chem. Eng. J. 2022, 446, 137260.

[9]

Sista, K. S.; Dwarapudi, S.; Kumar, D.; Sinha, G. R.; Moon, A. P. Carbonyl iron powders as absorption material for microwave interference shielding: A review. J. Alloys Compd. 2021, 853, 157251.

[10]

Tahir, D.; Heryanto, H.; Ilyas, S.; Fahri, A. N.; Rahmat, R.; Rahmi, M. H.; Taryana, Y.; Sukaryo, S. G. Excellent electromagnetic wave absorption of Co/Fe2O3 composites by additional activated carbon for tuning the optical and the magnetic properties. J. Alloys Compd. 2021, 864, 158780.

[11]

Adebayo, L. L.; Soleimani, H.; Yahya, N.; Abbas, Z.; Wahaab, F. A.; Ayinla, R. T.; Ali, H. Recent advances in the development of Fe3O4-based microwave absorbing materials. Ceram. Int. 2020, 46, 1249–1268.

[12]

Wu, N. N.; Du, W. J.; Hu, Q.; Vupputuri, S.; Jiang, Q. L. Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng. Sci. 2021, 13, 11–23.

[13]

Zhao, B.; Deng, J. S.; Zhang, R.; Liang, L. Y.; Fan, B. B.; Bai, Z. Y.; Shao, G.; Park, C. B. Recent advances on the electromagnetic wave absorption properties of Ni based materials. Eng. Sci. 2018, 3, 5–40.

[14]

Wang, B. L.; Wu, Q.; Fu, Y. G.; Liu, T. A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 2021, 86, 91–109.

[15]

Elmahaishi, M. F.; Azis, R. S.; Ismail, I.; Muhammad, F. D. A review on electromagnetic microwave absorption properties: Their materials and performance. J. Mater. Res. Technol. 2022, 20, 2188–2220.

[16]

Jiang, B.; Qi, C. L.; Yang, H.; Wu, X.; Yang, W.; Zhang, C.; Li, S. Y.; Wang, L. H.; Li, Y. F. Recent advances of carbon-based electromagnetic wave absorption materials facing the actual situations. Carbon 2023, 208, 390–409.

[17]

Gai, L. X.; Zhao, H. H.; Wang, F. Y.; Wang, P.; Liu, Y. L.; Han, X. J.; Du, Y. C. Advances in core–shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 2022, 15, 9410–9439.

[18]

Huo, K. L.; Yang, S. H.; Zong, J. Y.; Chu, J. J.; Wang, Y. D.; Cao, M. S. Carbon-based EM functional materials and multi-band microwave devices: Current progress and perspectives. Carbon 2023, 213, 118193.

[19]

Zhang, S. J.; Cheng, B.; Jia, Z. R.; Zhao, Z. W.; Jin, X. T.; Zhao, Z. H.; Wu, G. L. The art of framework construction: Hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 1658–1698.

[20]

Tiwari, A. P.; Chae, S. H.; Ojha, G. P.; Dahal, B.; Mukhiya, T.; Lee, M.; Chhetri, K.; Kim, T.; Kim, H. Y. Three-dimensional porous carbonaceous network with in-situ entrapped metallic cobalt for supercapacitor application. J. Colloid Interface Sci. 2019, 553, 622–630.

[21]

Wang, L.; Li, X.; Li, Q. Q.; Yu, X. F.; Zhao, Y. H.; Zhang, J.; Wang, M.; Che, R. C. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 2019, 15, 1900900.

[22]

Tang, S. F.; Hu, C. L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: A review. J. Mater. Sci. Technol. 2017, 33, 117–130.

[23]

Saito, N.; Aoki, K.; Usui, Y.; Shimizu, M.; Hara, K.; Narita, N.; Ogihara, N.; Nakamura, K.; Ishigaki, N.; Kato, H. et al. Application of carbon fibers to biomaterials: A new era of nano-level control of carbon fibers after 30-years of development. Chem. Soc. Rev. 2011, 40, 3824–3834.

[24]

Wang, Y.; Li, A. Y.; Zhang, S. H.; Guo, B. B.; Niu, D. T. A review on new methods of recycling waste carbon fiber and its application in construction and industry. Constr. Build. Mater. 2023, 367, 130301.

[25]

Chua, C. Y. X.; Liu, H. C.; Di Trani, N.; Susnjar, A.; Ho, J.; Scorrano, G.; Rhudy, J.; Sizovs, A.; Lolli, G.; Hernandez, N. et al. Carbon fiber reinforced polymers for implantable medical devices. Biomaterials 2021, 271, 120719.

[26]

Han, X. P.; Huang, Y.; Wang, J. M.; Zhang, G. Z.; Li, T. H.; Liu, P. B. Flexible hierarchical ZnO/AgNWs/carbon cloth-based film for efficient microwave absorption, high thermal conductivity and strong electro-thermal effect. Compos., Part B: Eng. 2022, 229, 109458.

[27]

Wang, Z. H.; Yang, L. X.; Zhou, Y.; Xu, C.; Yan, M.; Wu, C. NiFe LDH/MXene derivatives interconnected with carbon fabric for flexible electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2021, 13, 16713–16721.

[28]

Chen, Z. H.; Tian, K. H.; Zhang, C.; Shu, R. W.; Zhu, J. B.; Liu, Y.; Huang, Y. N.; Liu, X. W. In-situ hydrothermal synthesis of NiCo alloy particles@hydrophilic carbon cloth to construct corncob-like heterostructure for high-performance electromagnetic wave absorbers. J. Colloid Interface Sci. 2022, 616, 823–833

[29]

Chen, Z. M.; Zhang, Y.; Wang, Z. D.; Wu, Y.; Zhao, Y.; Liu, L.; Ji, G. B. Bioinspired moth-eye multi-mechanism composite ultra-wideband microwave absorber based on the graphite powder. Carbon 2023, 201, 542–548.

[30]

An, Q.; Li, D. W.; Liao, W. H.; Liu, T. T.; Joralmon, D.; Li, X. J.; Zhao, J. M. A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures. Adv. Mater. 2023, 35, 2300659.

[31]

Vogelman, T. C.; Nishio, J. N.; Smith, W. K. Leaves and light capture: Light propagation and gradients of carbon fixation within leaves. Trends Plant Sci. 1996, 1, 65–70.

[32]

F. W.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: A robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem., Int. Ed. 2017, 56, 505–509.

[33]

Gu, Y. J.; Wen, W.; Wu, J. M. Simple air calcination affords commercial carbon cloth with high areal specific capacitance for symmetrical supercapacitors. J. Mater. Chem. A 2018, 6, 21078–21086.

[34]

Hou, S. K.; Wang, Y.; Gao, F.; Wang, F. Y.; Yang, H.; Jin, F.; Bai, G. X.; Cao, Z. H.; Du, Y. C. In situ growing fusiform SnO2 nanocrystals film on carbon fiber cloth as an efficient and flexible microwave absorber. Mater. Des. 2023, 225, 111576

[35]

Vogelmann, T. C.; Bornman, J. F.; Yates, D. J. Focusing of light by leaf epidermal cells. Physiol. Plant. 1996, 98, 43–56.

[36]

Vogelmann, T. C. Plant tissue optics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 231–251.

[37]

Wang, L. Q.; Yuan, J. R.; Zhao, Q. Q.; Wang, Z. T.; Zhu, Y. Q.; Ma, X. L.; Cao, C. B. Supported SnS2 nanosheet array as binder-free anode for sodium ion batteries. Electrochim. Acta 2019, 308, 174–184.

[38]

Zhang, G. P.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. SnS2/SnO2 heterostructured nanosheet arrays grown on carbon cloth for efficient photocatalytic reduction of Cr(VI). J. Colloid Interface Sci. 2018, 514, 306–315.

[39]

Wang, C. J.; Wang, Y. X.; Jiang, H. T.; Tan, H. X.; Liu, D. M. Continuous in-situ growth of carbon nanotubes on carbon fibers at various temperatures for efficient electromagnetic wave absorption. Carbon 2022, 200, 94–107.

[40]

Min, X.; Sun, B.; Chen, S.; Fang, M. H.; Wu, X. W.; Liu, Y. G.; Abdelkader, A.; Huang, Z. H.; Liu, T.; Xi, K. et al. A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 2019, 16, 597–606.

[41]

Narsimulu, D.; Nagaraju, G.; Chandra Sekhar, S.; Ramulu, B.; Su Yu, J. Three-dimensional porous SnO2/carbon cloth electrodes for high-performance lithium- and sodium-ion batteries. Appl. Surf. Sci. 2021, 538, 148033.

[42]

Le, T. H.; Truong, Q. D.; Kimura, T.; Li, H. H.; Guo, C. S.; Yin, S.; Sato, T.; Ling, Y. C. Construction of 3D hierarchical SnO2 microspheres from porous nanosheets towards NO decomposition. Solid State Sci. 2013, 15, 29–35.

[43]

Xu, K.; Li, N.; Zeng, D. W.; Tian, S. Q.; Zhang, S. S.; Hu, D.; Xie, C. S. Interface bonds determined gas-sensing of SnO2-SnS2 hybrids to ammonia at room temperature. ACS Appl. Mater. Interfaces 2015, 7, 11359–11368.

[44]

Wang, Y. H.; Li, X. D.; Han, X. J.; Xu, P.; Cui, L. R.; Zhao, H. H.; Liu, D. W.; Wang, F. Y.; Du, Y. C. Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 2020, 387, 124159.

[45]

Han, B. H.; Chu, W. L.; Han, X. J.; Xu, P.; Liu, D. W.; Cui, L. R.; Wang, Y. H.; Zhao, H. H.; Du, Y. C. Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials. Carbon 2020, 168, 404–414.

[46]

Wang, F. Y.; Liu, Y. L.; Zhao, H. H.; Cui, L. R.; Gai, L. X.; Han, X. J.; Du, Y. C. Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 2022, 450, 138160.

[47]

Hou, S. K.; Wang, Y.; Gao, F.; Yang, H.; Jin, F.; Ren, L.; Wu, Q.; Ge, H. L.; Wang, Y. H. A novel approach to electromagnetic wave absorbing material design: Utilizing nano-antenna arrays for efficient electromagnetic wave capture. Chem. Eng. J. 2023, 471, 144779.

[48]

Xu, Z. J.; He, M.; Zhou, Y. M.; Zhang, M. Y.; Feng, S. J.; Wang, Y. J.; Xu, R.; Peng, H.; Chen, X. Rime-like carbon paper@Bi2S3 hybrid structure for efficient and broadband microwave absorption. Chem. Eng. J. 2022, 428, 131127.

[49]

Wang, Y. H.; Zhang, M. H.; Deng, X. S.; Li, Z. G.; Chen, Z. S.; Shi, J. M.; Han, X. J.; Du, Y. C. Reduced graphene oxide aerogel decorated with Mo2C nanoparticles toward multifunctional properties of hydrophobicity, thermal insulation and microwave absorption. Int. J. Miner., Metall. Mater. 2023, 30, 536–547.

[50]

Wan, Z. D.; Ma, H. L.; Hou, S. K.; Wang, Y.; Ho, J.; Ge, H. L. Fabrication of hollow microhemisphere-like polypyrrole and carbon dielectric materials by sol-gel template method for enhanced microwave absorption. J. Mater. Sci.: Mater. Electron. 2021, 32, 10991–11003.

[51]

Yin, Y. C.; Liu, X. F.; Wei, X. J.; Yu, R. H.; Shui, J. L. Porous CNTs/Co composite derived from zeolitic imidazolate framework: A lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 2016, 8, 34686–34698.

[52]

Ge, J. W.; Liu, S. M.; Liu, L.; Cui, Y.; Meng, F. D.; Li, Y. X.; Zhang, X. F.; Wang, F. H. Optimizing the electromagnetic wave absorption performance of designed hollow CoFe2O4/CoFe@C microspheres. J. Mater. Sci. Technol. 2021, 81, 190–202.

[53]

Zhai, N. X.; Luo, J. H.; Xiao, M. W.; Zhang, Y. C.; Yan, W. X.; Xu, Y. In situ construction of Co@nitrogen-doped carbon/Ni nanocomposite for broadband electromagnetic wave absorption. Carbon 2023, 203, 416–425

[54]

Cheng, R. R.; Wang, Y.; Di, X. C.; Lu, Z.; Wang, P.; Ma, M. L.; Ye, J. R. Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J. Colloid Interface Sci. 2022, 609, 224–234.

[55]

Cheng, S. Y.; Zhang, C.; Wang, H.; Ye, J. R.; Li, Y.; Zhuang, Q.; Dong, W.; Xie, A. M. Carbon nanofilm stabilized twisty V2O3 nanorods with enhanced multiple polarization behavior for electromagnetic wave absorption application. J. Mater. Sci. Technol. 2022, 119, 37–44.

[56]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

[57]

Zhang, M.; Ling, H. L.; Ding, S. Q.; Xie, Y. X.; Cheng, T. T.; Zhao, L. B.; Wang, T.; Bian, H. G.; Lin, H.; Li, Z. J. et al. Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber. Carbon 2021, 174, 248–259.

[58]

Xiang, Z.; Zhu, X. J.; Dong, Y. Y.; Zhang, X.; Shi, Y. Y.; Lu, W. Enhanced electromagnetic wave absorption of magnetic Co nanoparticles/CNTs/EG porous composites with waterproof, flame-retardant and thermal management functions. J. Mater. Chem. A 2021, 9, 17538–17552.

[59]

Li, Z. J.; Lin, H.; Ding, S. Q.; Ling, H. L.; Wang, T.; Miao, Z. Q.; Zhang, M.; Meng, A. L.; Li, Q. D. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 2020, 167, 148–159.

[60]

Bhattacharyya, R.; Kumar Singh, V.; Bhattacharyya, S.; Maiti, P.; Das, S. Defect reconstructions in graphene for excellent broadband absorption properties with enhanced bandwidth. Appl. Surf. Sci. 2021, 537, 147840.

[61]

Quan, B.; Liang, X. H.; Ji, G. B.; Cheng, Y.; Liu, W.; Ma, J. N.; Zhang, Y. N.; Li, D. R.; Xu, G. Y. Dielectric polarization in electromagnetic wave absorption: Review and perspective. J. Alloys Compd. 2017, 728, 1065–1075.

[62]

Qiao, J.; Zhang, X.; Liu, C.; Lyu, L. F.; Yang, Y. F.; Wang, Z.; Wu, L. L.; Liu, W.; Wang, F. L.; Liu, J. R. Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 2021, 13, 75.

[63]

Li, Y. L.; Gao, X. P.; Wang, M.; Gao, Y. N.; Jiang, D. L. Annealed covalent organic framework thin films for exceptional absorption of ultrabroad low-frequency electromagnetic waves. Small 2022, 18, 2205400.

[64]

Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

[65]

Li, Z. J.; Lin, H.; Xie, Y. X.; Zhao, L. B.; Guo, Y. Y.; Cheng, T. T.; Ling, H. L.; Meng, A. L.; Li, S. X.; Zhang, M. Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 124, 182–192.

[66]

Zhang, M.; Ling, H. L.; Wang, T.; Jiang, Y. J.; Song, G. Y.; Zhao, W.; Zhao, L. B.; Cheng, T. T.; Xie, Y. X.; Guo, Y. Y. et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism. Nano-Micro Lett. 2022, 14, 157.

[67]

Zheng, Q.; Wang, J. Q.; Yu, M. J.; Cao, W. Q.; Zhai, H. Z.; Cao, M. S. Heterodimensional structure porous nanofibers embedded confining magnetic nanocrystals for electromagnetic functional material and device. Carbon 2023, 210, 118049.

[68]

Wang, P.; Gai, L. X.; Hu, B.; Liu, Y. L.; Wang, F. Y.; Xu, P.; Han, X. J.; Du, Y. C. Topological MOFs deformation for the direct preparation of electromagnetic functionalized Ni/C aerogels with good hydrophobicity and thermal insulation. Carbon 2023, 212, 118132.

[69]

Liu, D. W.; Du, Y. C.; Wang, F. Y.; Wang, Y. H.; Cui, L. R.; Zhao, H. H.; Han, X. J. MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 2020, 157, 478–485.

[70]

Li, B.; Wu, N.; Yang, Y. F.; Pan, F.; Wang, C. X.; Wang, G.; Xiao, L.; Liu, W.; Liu, J. R.; Zeng, Z. H. Graphene oxide-assisted multiple cross-linking of mxene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 2023, 33, 2213357.

[71]

Chen, T. Y.; Jiang, S.; Li, L. L.; Qian, K.; Sun, J.; Guo, W. W.; Cai, X. D.; Yu, K. J. Vertically aligned MnO2 nanostructures on carbon fibers with tunable electromagnetic wave absorption performance. Appl. Surf. Sci. 2022, 589, 152858.

[72]

Pan, F.; Cai, L.; Dong, Y. Y.; Zhu, X. J.; Shi, Y. Y.; Lu, W. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 101, 85–94.

[73]

Luo, J. H.; Yan, W. X.; Li, X. P.; Shu, P. C.; Mei, J.; Shi, Y. F. Carbon nanotubes decorated FeNi/nitrogen-doped carbon composites for lightweight and broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 158, 207–217.

[74]

Luo, J. H.; Li, X. P.; Yan, W. X.; Shu, P. C.; Mei, J. RGO supported bimetallic MOFs-derived Co/MnO/porous carbon composite toward broadband electromagnetic wave absorption. Carbon 2023, 205, 552–561.

[75]

Wu, N.; Li, B.; Pan, F.; Zhang, R. N.; Liu, J. R.; Zeng, Z. H. Ultrafine cellulose nanocrystal-reinforced MXene biomimetic composites for multifunctional electromagnetic interference shielding. Sci. China Mater. 2023, 66, 1597–1606.

[76]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[77]

Y. Y.; Zhang, M.; Cheng, T. T.; Xie, Y. X.; Zhao, L. B.; Jiang, L.; Zhao, W. X.; Yuan, L. Y.; Meng, A. L.; Zhang, J. et al. Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles. Nano Res. 2023, 16, 9591–9601.

[78]

Zhang, X.; Tian, X. L.; Qin, Y. T.; Qiao, J.; Pan, F.; Wu, N.; Wang, C. X.; Zhao, S. Y.; Liu, W.; Cui, J. et al. Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 2023, 17, 12510–12518.

[79]

Wu, N.; Yang, Y. F.; Wang, C. X.; Wu, Q. L.; Pan, F.; Zhang, R. N.; Liu, J. R.; Zeng, Z. H. Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 2023, 35, 2207969.

[80]

Liang, H. S.; Chen, G.; Liu, D.; Li, Z. J.; Hui, S. C.; Yun, J. J.; Zhang, L. M.; Wu, H. L. Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv. Funct. Mater. 2023, 33, 2212604.

[81]

Li, B.; Yang, Y. F.; Wu, N.; Zhao, S. Y.; Jin, H.; Wang, G. L.; Li, X. Y.; Liu, W.; Liu, J. R.; Zeng, Z. H. Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 2022, 16, 19293–19304.

[82]

Li, B.; Wu, N.; Wu, Q. L.; Yang, Y. F.; Pan, F.; Liu, W.; Liu, J. R.; Zeng, Z. H. From “100%” utilization of MAX/MXene to direct engineering of wearable, multifunctional e-textiles in extreme environments. Adv. Funct. Mater. 2023, 33, 2307301.

Nano Research
Pages 4507-4516
Cite this article:
Hou S, Wang Y, Gao F, et al. Biomimetic leaf structures for ultra-thin electromagnetic wave absorption. Nano Research, 2024, 17(5): 4507-4516. https://doi.org/10.1007/s12274-023-6305-7
Topics:
Metrics & Citations  
Article History
Copyright
Return