AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Defect-modulated synthesis and optoelectronic properties in chemical vapor deposited CsPbBr3 microplates

Yanan Bao1,§Hengshan Wang1,§Meiqi An1Huayi Tang1Jing Li1,2Jianliang Li1Conghui Tan1Yingmin Luo1Jiao Xu1( )Yiming Yang1( )
School of Microelectronics, Dalian University of Technology, Dalian 116024, China
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China

§ Yanan Bao and Hengshan Wang contributed equally to this work.

Show Author Information

Graphical Abstract

The microplate synthesis is initiated by defects, followed by transition to layer-by-layer growth, resulting in anomalous annealing effect on the luminescence and optoelectronic performance.

Abstract

The remarkable optoelectronic features of halide perovskite promote their potential applications in semiconductor devices beyond solar cells, which require high-quality single crystals with controlled defect levels. Herein, we investigated the synthesis mechanism of chemical vapor deposited single-crystalline all-inorganic perovskite microplates (MPs), and reported a defect-modulated photocurrent which is closely related to the growth sequence of the MPs. The MP synthesis initiates from island-like nano-disks, and subsequently transits to a layer-by-layer fashion, resulting in a defect-rich area at the center of the MPs. At elevated temperatures, these central defects may be thermally activated and become highly mobile, leading to photoluminescence quenching and degression of local and overall optoelectronic attributes, as evidenced by the spatial resolved optical and electrical scanning probe microscopy. Overall, this work shines light on the formation, proliferation and dynamics of defects in perovskites, and offers guidance for preparation of high-quality perovskites micro-crystals for functional semiconductor devices with high temperature stability.

Electronic Supplementary Material

Download File(s)
12274_2023_6307_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Chen, P.; Bai, Y.; Wang, S. C.; Lyu, M.; Yun, J. H.; Wang, L. Z. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1706923.

[2]

Fan, M.; Huang, J. P.; Turyanska, L.; Bian, Z. F.; Wang, L. C.; Xu, C. Y.; Liu, N.; Li, H. B.; Zhang, X. Y.; Zhang, C. X. et al. Efficient all-perovskite white light-emitting diodes made of in situ grown perovskite-mesoporous silica nanocomposites. Adv. Funct. Mater. 2023, 33, 2215032.

[3]

Lê, K.; von Toperczer, F.; Ünlü, F.; Paramasivam, G.; Mathies, F.; Nandayapa, E.; List-Kratochvil, E. J. W.; Fischer, T.; Lindfors, K.; Mathur, S. Electrospun electroluminescent CsPbBr3 fibers as flexible perovskite networks for light-emitting application. Adv. Eng. Mater. 2023, 25, 2201651.

[4]

Su, H.; Zhang, L.; Liu, Y. C.; Hu, Y. J.; Zhang, B. B.; You, J. X.; Du, X. Y.; Zhang, J.; Ren, X. D.; Gou, J. et al. Polarity regulation for stable 2D-perovskite-encapsulated high-efficiency 3D-perovskite solar cells. Nano Energy 2022, 95, 106965.

[5]

Qiao, B. S.; Wang, S. Y.; Zhang, Z. H.; Lian, Z. D.; Zheng, Z. Y.; Wei, Z. P.; Li, L.; Ng, K. W.; Wang, S. P.; Liu, Z. B. Photosensitive dielectric 2D perovskite based photodetector for dual wavelength demultiplexing. Adv. Mater. 2023, 35, 2300632.

[6]

Li, J.; Xu, J.; Bao, Y. N.; Li, J. L.; Wang, H. S.; He, C. Y.; An, M. Q.; Tang, H. Y.; Sun, Z. G.; Fang, Y. R. et al. Anion-exchange driven phase transition in CsPbI3 nanowires for fabricating epitaxial perovskite heterojunctions. Adv. Mater. 2022, 34, 2109867.

[7]

Cen, G. B.; Liu, Y. J.; Zhao, C. X.; Wang, G.; Fu, Y.; Yan, G. H.; Yuan, Y.; Su, C. H.; Zhao, Z. J.; Mai, W. Atomic-layer deposition-assisted double-side interfacial engineering for high-performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications. Small 2019, 15, 1902135.

[8]

Yan, G. H.; Jiang, B. Q.; Xiao, Y.; Zhao, C. X.; Yuan, Y.; Liang, Z. C. Alkali metal ions induced high-quality all-inorganic Cs2AgBiBr6 perovskite films for flexible self-powered photodetectors. Appl. Surf. Sci. 2022, 579, 152198.

[9]

Li, J. Y.; Han, Z. Y.; Gu, Y.; Yu, D. J.; Liu, J. X.; Hu, D. W.; Xu, X. B.; Zeng, H. B. Perovskite single crystals: Synthesis, optoelectronic properties, and application. Adv. Funct. Mater. 2021, 31, 2008684.

[10]

Liu, Z. R.; Zhang, Z. G.; Zhang, X. N.; Li, X. J.; Liu, Z. Y.; Liao, G. L.; Shen, Y.; Wang, M. K. Achieving high responsivity and detectivity in a quantum-dot-in-perovskite photodetector. Nano Lett. 2023, 23, 1181–1188.

[11]

Cao, X. H.; Xing, S. Y.; Lai, R. C.; Lian, Y. X.; Wang, Y. X.; Xu, J. Y.; Zou, C.; Zhao, B. D.; Di, D. W. Low-threshold, external-cavity-free flexible perovskite lasers. Adv. Funct. Mater. 2023, 33, 2211841.

[12]

Li, Y.; Roger, J.; Allegro, I.; Fischer, J. C.; Jin, Q. H.; Lemmer, U.; Howard, I. A.; Paetzold, U. W. Lasing from laminated quasi-2D/3D perovskite planar heterostructures. Adv. Funct. Mater. 2022, 32, 2200772.

[13]

Wang, Y. H.; Fan, Y. B.; Zhang, X. D.; Tang, H. J.; Song, Q. H.; Han, J. C.; Xiao, S. M. Highly controllable etchless perovskite microlasers based on bound states in the continuum. ACS Nano 2021, 15, 7386–7391.

[14]

Hu, S. L.; Tang, B.; Kershaw, S. V.; Rogach, A. L. Metal halide perovskite photo-field-effect transistors with chiral selectivity. ACS Appl. Mater. Interfaces 2023, 15, 27307–27315.

[15]

Shao, S. Y.; Talsma, W.; Pitaro, M.; Dong, J. J.; Kahmann, S.; Rommens, A. J.; Portale, G.; Loi, M. A. Field-effect transistors based on formamidinium tin triiodide perovskite. Adv. Funct. Mater. 2021, 31, 2008478.

[16]

Huang, J. M.; Lai, M. L.; Lin, J.; Yang, P. D. Rich chemistry in inorganic halide perovskite nanostructures. Adv. Mater. 2018, 30, 1802856.

[17]

He, C. Y.; Li, J.; Bao, Y. N.; Li, J. L.; Wang, H. S.; Zhang, M. Q.; Li, H. F.; Tang, H. Y.; Sun, Z. G.; Zhang, Q. et al. Robust heterostructures in two-dimensional perovskites by threshold-dominating anion exchange. Small 2022, 18, 2203036.

[18]

Xu, J.; Li, J.; Wang, H. S.; He, C. Y.; Li, J. L.; Bao, Y. N.; Tang, H. Y.; Luo, H. D.; Liu, X. C.; Yang, Y. M. A vertical PN diode constructed of MoS2/CsPbBr3 heterostructure for high-performance optoelectronics. Adv. Mater. Interfaces 2022, 9, 2101487.

[19]

Corzo, D.; Wang, T. H.; Gedda, M.; Yengel, E.; Khan, J. I.; Li, R. P.; Niazi, M. R.; Huang, Z. J.; Kim, T.; Baran, D. et al. A universal cosolvent evaporation strategy enables direct printing of perovskite single crystals for optoelectronic device applications. Adv. Mater. 2022, 34, 2109862.

[20]

Zhang, Z. M.; Vogelbacher, F.; De, J.; Wang, Y.; Liao, Q.; Tian, Y.; Song, Y. L.; Li, M. Z. Directional laser from solution-grown grating-patterned perovskite single-crystal microdisks. Angew. Chem., Int. Ed. 2022, 61, e202205636.

[21]

Eames, C.; Frost, J. M.; Barnes, P. R. F.; O’regan, B. C.; Walsh, A.; Islam, M. S. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 2015, 6, 7497.

[22]

Liu, W.; Yu, H. R.; Li, Y. L.; Hu, A. Q.; Wang, J.; Lu, G. W.; Li, X. F.; Yang, H.; Dai, L.; Wang, S. F. et al. Mapping trap dynamics in a CsPbBr3 single-crystal microplate by ultrafast photoemission electron microscopy. Nano Lett. 2021, 21, 2932–2938.

[23]

Ni, Z. Y.; Bao, C. X.; Liu, Y.; Jiang, Q.; Wu, W. Q.; Chen, S. S.; Dai, X. Z.; Chen, B.; Hartweg, B.; Yu, Z. S. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 2020, 367, 1352–1358.

[24]

Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative and non-radiative recombination. Adv. Energy Mater 2015, 5, 1400812.

[25]

Walsh, A.; Scanlon, D. O.; Chen, S. Y.; Gong, X. G.; Wei, S. H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. 2015, 127, 1811–1814.

[26]

Wu, X. X.; Trinh, M. T.; Niesner, D.; Zhu, H. M.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X. Y. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 2015, 137, 2089–2096.

[27]

Ding, J.; Lian, Z. P.; Li, Y.; Wang, S. F.; Yan, Q. F. The role of surface defects in photoluminescence and decay dynamics of high-quality perovskite MAPbI3 single crystals. J. Phys. Chem. Lett. 2018, 9, 4221–4226.

[28]

Du, W. N.; Zhang, S.; Shi, J.; Chen, J.; Wu, Z. Y.; Mi, Y.; Liu, Z. X.; Li, Y. Z.; Sui, X.; Wang, R. et al. Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics 2018, 5, 2051–2059.

[29]

Mo, X. D.; Li, X.; Dai, G. Z.; He, P.; Sun, J.; Huang, H.; Yang, J. L. All-inorganic perovskite CsPbBr3 microstructures growth via chemical vapor deposition for high-performance photodetectors. Nanoscale 2019, 11, 21386–21393.

[30]

Oksenberg, E.; Sanders, E.; Popovitz-Biro, R.; Houben, L.; Joselevich, E. Surface-guided CsPbBr3 perovskite nanowires on flat and faceted sapphire with size-dependent photoluminescence and fast photoconductive response. Nano Lett. 2018, 18, 424–433.

[31]

Pammi, S. V. N.; Maddaka, R.; Tran, V. D.; Eom, J. H.; Pecunia, V.; Majumder, S.; Kim, M. D.; Yoon, S. G. CVD-deposited hybrid lead halide perovskite films for high-responsivity, self-powered photodetectors with enhanced photo stability under ambient conditions. Nano Energy 2020, 74, 104872.

[32]

Shil, S. K.; Wang, F.; Egbo, K. O.; Lai, Z. X.; Wang, Y.; Wang, Y. P.; Zhao, D. X.; Tsang, S. W.; Ho, J. C.; Yu, K. M. Two-step chemical vapor deposition-synthesized lead-free all-inorganic Cs3Sb2Br9 perovskite microplates for optoelectronic applications. ACS Appl. Mater. Interfaces 2021, 13, 35930–35940.

[33]

Zhou, Y.; Fernando, K.; Wan, J. Y.; Liu, F. Z.; Shrestha, S.; Tisdale, J.; Sheehan, C. J.; Jones, A. C.; Tretiak, S.; Tsai, H. et al. Millimeter-size all-inorganic perovskite crystalline thin film grown by chemical vapor deposition. Adv. Funct. Mater. 2021, 31, 2101058.

[34]

Zhang, P.; Zhang, G. D.; Liu, L.; Ju, D. X.; Zhang, L. Z.; Cheng, K.; Tao, X. T. Anisotropic optoelectronic properties of melt-grown bulk CsPbBr3 single crystal. J. Phys. Chem. Lett. 2018, 9, 5040–5046.

[35]

Song, J. Z.; Cui, Q. Z.; Li, J. H.; Xu, J. Y.; Wang, Y.; Xu, L. M.; Xue, J.; Dong, Y. H.; Tian, T.; Sun, H. D. et al. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible-infrared dual-modal photodetectors. Adv. Opt. Mater. 2017, 5, 1700157.

[36]

Meng, Y.; Lai, Z. X.; Li, F. Z.; Wang, W.; Yip, S.; Quan, Q.; Bu, X. M.; Wang, F.; Bao, Y.; Hosomi, T. et al. Perovskite core–shell nanowire transistors: Interfacial transfer doping and surface passivation. ACS Nano 2020, 14, 12749–12760.

[37]

Meng, Y.; Lan, C. Y.; Li, F. Z.; Yip, S.; Wei, R. J.; Kang, X. L.; Bu, X. M.; Dong, R. T.; Zhang, H.; Ho, J. C. Direct vapor-liquid-solid synthesis of all-inorganic perovskite nanowires for high-performance electronics and optoelectronics. ACS Nano 2019, 13, 6060–6070.

[38]

Meng, Y.; Zhang, Y. X.; Lai, Z. X.; Wang, W.; Wang, W. J.; Li, Y. Z.; Li, D. J.; Xie, P. S.; Yin, D.; Chen, D. et al. Au-seeded CsPbI3 nanowire optoelectronics via exothermic nucleation. Nano Lett. 2023, 23, 812–819.

[39]

Li, G. H.; Chen, K. Q.; Cui, Y. X.; Zhang, Y. P.; Tian, Y.; Tian, B. N.; Hao, Y. Y.; Wu, Y. C.; Zhang, H. Stability of perovskite light sources: Status and challenges. Adv. Opt. Mater. 2020, 8, 1902012.

[40]

Kajikawa, Y.; Noda, S. Growth mode during initial stage of chemical vapor deposition. Appl. Surf. Sci. 2005, 245, 281–289.

[41]

Li, G. H.; Che, T.; Ji, X. Q.; Liu, S. D.; Hao, Y. Y.; Cui, Y. X.; Liu, S. Z. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite. Adv. Funct. Mater. 2019, 29, 1805553.

[42]

Li, F. T.; Lu, J. F.; Zhang, Q. L.; Peng, D. F.; Yang, Z.; Xu, Q.; Pan, C. F.; Pan, A. L.; Li, T. F.; Wang, R. M. Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH3NH3PbBr3 perovskite cuboids. Sci. Bull. 2019, 64, 698–704.

[43]

Duijnstee, E. A.; Ball, J. M.; Le Corre, V. M.; Koster, L. J. A.; Snaith, H. J.; Lim, J. Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett. 2020, 5, 376–384.

[44]

Le Corre, V. M.; Duijnstee, E. A.; El Tambouli, O.; Ball, J. M.; Snaith, H. J.; Lim, J.; Koster, L. J. A. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 2021, 6, 1087–1094.

[45]

Sajedi Alvar, M.; Blom, P. W. M.; Wetzelaer, G. J. A. H. Space-charge-limited electron and hole currents in hybrid organic-inorganic perovskites. Nat. Commun. 2020, 11, 4023.

[46]

Si, H. N.; Xu, C. Z.; Ou, Y.; Zhang, G. J.; Fan, W. Q.; Xiong, Z. Z.; Kausar, A.; Liao, Q. L.; Zhang, Z.; Sattar, A. et al. Dual-passivation of ionic defects for highly crystalline perovskite. Nano Energy 2020, 68, 104320.

[47]

Zhang, F. G.; Cong, J. Y.; Li, Y. Y.; Bergstrand, J.; Liu, H. C.; Cai, B.; Hajian, A.; Yao, Z. Y.; Wang, L. Q.; Hao, Y. et al. A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy 2018, 53, 405–414.

[48]

Kennard, R. M.; Dahlman, C. J.; Nakayama, H.; DeCrescent, R. A.; Schuller, J. A.; Seshadri, R.; Mukherjee, K.; Chabinyc, M. L. Phase stability and diffusion in lateral heterostructures of methyl ammonium lead halide perovskites. ACS Appl. Mater. Interfaces 2019, 11, 25313–25321.

Nano Research
Pages 4610-4615
Cite this article:
Bao Y, Wang H, An M, et al. Defect-modulated synthesis and optoelectronic properties in chemical vapor deposited CsPbBr3 microplates. Nano Research, 2024, 17(5): 4610-4615. https://doi.org/10.1007/s12274-023-6307-5
Topics:

645

Views

1

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 17 August 2023
Revised: 02 November 2023
Accepted: 11 November 2023
Published: 02 December 2023
© Tsinghua University Press 2023
Return