AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gradient-structure-enhanced dielectric energy storage performance of flexible nanocomposites containing controlled preparation of defective TiO2 and ferroelectric KNbO3 nanosheets

Yan Wang1Lili Zhao2Ruicong Chen1Wenhui Zhao1Dengwei Hu3Haoran Wang1Bin Cui1( )
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory of Physico–Inorganic Chemistry, Xi’an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
School of Information Science and Technology, Northwest University, Xi’an 710127, China
Engineering Research Center for Titanium Based Functional Materials and Devices in Universities of Shaanxi Province, Faculty of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
Show Author Information

Graphical Abstract

Morphology control and defect control of two-dimensional KNbO3 and TiO2 are realized by hydrothermal method, and asymmetric trilayered KNbO3 (KN)/TiO2 (TO)/poly(vinylidene fluoride)-polymethyl methacrylate (PVDF-PMMA) polymer-based nanocomposites are designed. The nanocomposites acquire a high Ue of 21.61 J·cm−3 at 548 MV·m−1. This study provides an idea for improving the dielectric energy storage performance of dielectrics by designing the composite structure.

Abstract

Next generation power system needs dielectrics with increased dielectric energy density. However, the low energy density of dielectrics limits their development. Here, an asymmetric trilayered nanocomposite, with a transition layer (TL), an insulation layer (IL), and a polarization layer (PL), is designed based on poly(vinylidene fluoride)-polymethyl methacrylate (PVDF-PMMA) matrix using KNbO3 (KN) and TiO2 (TO) as the nanofillers. The morphology and defect control of the two-dimensional nano KN and nano TO fillers are realized via a hydrothermal method to increase the composite breakdown strength (Eb) and the composite energy density (Ue). The asymmetric trilayered structure leads to a gradient electric field distribution, and the KN and TO nanosheets block charges transfer along z direction. As a result, the development path of the electrical trees is greatly curved, and Eb is effectively improved. And the Ue value of the nanocomposites reaches 17.79 J·cm−3 at 523 MV·m−1. On the basis, the composite Ue is further improved by defect control in TO nanosheets. The nanocomposite KN/TO/PVDF-PMMA containing TO with less oxygen vacancy concentration (calcined at oxygen atmosphere) acquires a high Ue of 21.61 J·cm−3 at 548 MV·m−1. This study provides an idea for improving the energy storage performance by combining the design of the composite dielectric structure and the control of nanofillers’ defect and morphology.

Electronic Supplementary Material

Download File(s)
12274_2023_6308_MOESM1_ESM.pdf (2.2 MB)

References

[1]

Pan, H.; Li, F.; Liu, Y.; Zhang, Q. H.; Wang, M.; Lan, S.; Zheng, Y. P.; Ma, J.; Gu, L.; Shen, Y. et al. Ultrahigh energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019, 365, 578–582.

[2]

Ding, J. L.; Xu, W. H.; Zhu, X. B.; Liu, Z.; Zhang, Y. H.; Jiang, Z. H. All-organic nanocomposite dielectrics contained with polymer dots for high-temperature capacitive energy storage. Nano Res. 2023, 16, 10183–10190.

[3]

Ju, T. X.; Chen, X. Y.; Langhe, D.; Ponting, M.; Baer, E.; Zhu, L. Enhancing breakdown strength and lifetime of multilayer dielectric films by using high temperature polycarbonate skin layers. Energy Storage Mater. 2022, 45, 494–503.

[4]

Su, Y. H.; Huan, Y.; Peng, B.; Wang, X. J.; Wu, L. W.; Wei, T. Energy storage properties of flexible dielectric composites containing Ba0.4Sr0.6TiO3/MnO2 heterostructures. Chem. Eng. J. 2023, 452, 139316.

[5]

Yang, L. T.; Kong, X.; Li, F.; Hao, H.; Cheng, Z. X.; Liu, H. X.; Li, J. F.; Zhang, S. J. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci. 2019, 102, 72–108.

[6]

Chi, Q. G.; Zhou, Y. H.; Yin, C.; Zhang, Y.; Zhang, C. H.; Zhang, T. D.; Feng, Y.; Zhang, Y. Q.; Chen, Q. G. A blended binary composite of poly(vinylidene fluoride) and poly(methyl methacrylate) exhibiting excellent energy storage performances. J. Mater. Chem. C 2019, 7, 14148–14158.

[7]

Liu, C. Y.; Li, D. L.; Li, Y.; Xu, L.; Meng, X.; Zhong, G. J.; Huang, H. D.; Li, Z. M. Enhanced quasilinear dielectric behavior of polyvinylidene fluoride via confined crystallization and aligned dipole polarization. Macromolecules 2022, 55, 9680–9689.

[8]

Yao, Z. H.; Song, Z.; Hao, H.; Yu, Z. Y.; Cao, M. H.; Zhang, S. J.; Lanagan, M. T.; Liu, H. X. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 2017, 29, 1601727.

[9]

Luo, B. C.; Shen, Z. H.; Cai, Z. M.; Tian, E. K.; Yao, Y.; Li, B. W.; Kursumovic, A.; MacManus-Driscoll, J. L.; Li, L. T.; Chen, L. Q. et al. Superhierarchical inorganic/organic nanocomposites exhibiting simultaneous ultrahigh dielectric energy density and high efficiency. Adv. Funct. Mater. 2021, 31, 2007994.

[10]

Li, H.; Yang, T. N.; Zhou, Y.; Ai, D.; Yao, B.; Liu, Y.; Li, L.; Chen, L. Q.; Wang, Q. Enabling High-energy-density high-efficiency ferroelectric polymer nanocomposites with rationally designed nanofillers. Adv. Funct. Mater. 2021, 31, 2006739.

[11]

Ren, L. L.; Li, H.; Xie, Z. L.; Ai, D.; Zhou, Y.; Liu, Y.; Zhang, S. Y.; Yang, L. J.; Zhao, X. T.; Peng, Z. R. et al. High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core–shell nanostructured nanofillers. Adv. Energy Mater. 2021, 11, 2101297.

[12]

Liu, Y. H.; Wen, Y. Y.; Xu, W. W.; Li, B.; Song, Z. M.; Li, Y. Y.; Xia, F. Improving the energy density of P(VDF-HFP)/boron nitride nanosheets nanocomposites by using the third phase filler with high dielectric constant. J. Polym. Res. 2021, 28, 411.

[13]
Jiang, Y. L.; Chen, Q. S.; Wang, D.; Li, X.; Xu, Y. P.; Xu, Z. N.; Guo, G. C. In situ structural evolution of BiOCOOH nanowires and their performance towards electrocatalytic CO2 reduction. Nano Res. 2023 , 16, 6661–6669.
[14]

Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1–28.

[15]

Lin, Y.; Sun, C.; Zhan, S. L.; Zhang, Y. J.; Yang, H. B.; Yuan, Q. B. Two-dimensional sheet-like K0.5Na0.5NbO3 platelets and sandwich structure induced ultrahigh discharge efficiency in poly(vinylidenefluoride)-based composites. Compos. Sci. Technol. 2020, 199, 108368.

[16]

Shen, Z. H.; Wang, J. J.; Lin, Y. H.; Nan, C. W.; Chen, L. Q.; Shen, Y. High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 2018, 30, 1704380.

[17]

Shen, Z. H.; Bao, Z. W.; Cheng, X. X.; Li, B. W.; Liu, H. X.; Shen, Y.; Chen, L. Q.; Li, X. G.; Nan, C. W. Designing polymer nanocomposites with high energy density using machine learning. npj Comput. Mater. 2021, 7, 110.

[18]

Jin, J. T.; Liu, Y. C.; Zhao, X. D.; Liu, H.; Deng, S. D.; Shen, Q. Y.; Hou, Y.; Qi, H.; Xing, X. R.; Jiao, L. F. et al. Annealing in argon universally upgrades the na-storage performance of mn-based layered oxide cathodes by creating bulk oxygen vacancies. Angew. Chem., Int. Ed. 2023, 62, e202219230.

[19]

Kim, J. H.; Kweon, S. H.; Nahm, S. Low-temperature crystalline lead-free piezoelectric thin films grown on 2D perovskite nanosheet for flexible electronic device applications. Nano Res. 2019, 12, 2559–2567.

[20]

Che, Z. Y.; Ma, L.; Luo, G. G.; Xu, C.; Cen, Z. Y.; Feng, Q.; Chen, X. Y.; Ren, K. L.; Luo, N. N. Phase structure and defect engineering in (Bi0.5Na0.5)TiO3-based relaxor antiferroelectrics toward excellent energy storage performance. Nano Energy 2022, 100, 107484.

[21]

Song, Z.; Liu, H. X.; Lanagan, M. T.; Zhang, S. J.; Hao, H.; Cao, M. H.; Yao, Z. H.; Fu, Z. X.; Huang, K. Thermal annealing effects on the energy storage properties of BST ceramics. J. Am. Ceram. Soc. 2017, 100, 3550–3557.

[22]

Shang, Y. N.; Feng, Y.; Zhang, C. H.; Zhang, T. D.; Lei, Q. Q.; Chi, Q. G. Double gradient composite dielectric with high energy density and efficiency. J. Mater. Chem. A 2022, 10, 15183–15195.

[23]

Jing, L.; Li, W. L.; Gao, C.; Li, M. L.; Fei, W. D. Achieving high energy storage performance in BiFeO3@TiO2 filled PVDF-based composites with opposite double heterojunction via electric field tailoring. Chem. Eng. J. 2022, 450, 138143.

[24]

Pan, Z. B.; Yao, L. M.; Zhai, J. W.; Yao, X.; Chen, H. Interfacial coupling effect in organic/inorganic nanocomposites with high energy density. Adv. Mater. 2018, 30, 1705662.

[25]

Xie, B.; Zhang, Q.; Zhang, L.; Zhu, Y. W.; Guo, X.; Fan, P. Y.; Zhang, H. B. Ultrahigh discharged energy density in polymer nanocomposites by designing linear/ferroelectric bilayer heterostructure. Nano Energy 2018, 54, 437–446.

[26]

Wang, Y.F.; Cui, J.; Yuan, Q. B.; Niu, Y. J.; Bai, Y. Y.; Wang, H. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv. Mater. 2015, 27, 6658–6663.

[27]

Tan, D. Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Funct. Mater. 2020, 30, 1808567.

[28]

Feng, M. J.; Feng, Y.; Zhang, T. D.; Li, J. L.; Chen, Q. G.; Chi, Q. G.; Lei, Q. Q. Recent advances in multilayer-structure dielectrics for energy storage application. Adv. Sci. (Weinh.) 2021, 8, 2102221.

[29]

Bai, H. R.; Ge, G. L.; Yan, F.; Zhu, K.; Qian, J.; Shi, C.; Li, Y. X.; Xie, H. J.; Shen, B.; Zhai, J. W. Highly enhanced energy storage performance of trilayered gradient polymer-based nanocomposite via 2D SNO@Ag nanosheets. Chem. Eng. J. 2023, 463, 142428.

[30]

Wang, Y. F.; Li, Y.; Wang, L. X.; Yuan, Q. B.; Chen, J.; Niu, Y. J.; Xu, X. W.; Wang, Q.; Wang, H. Gradient-layered polymer nanocomposites with significantly improved insulation performance for dielectric energy storage. Energy Storage Mater. 2020, 24, 626–634.

[31]

Sun, L.; Shi, Z. C.; He, B. L.; Wang, H. L.; Liu, S.; Huang, M. H.; Shi, J.; Dastan, D.; Wang, H. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: A novel design targeting advanced energy storage capacitors. Adv. Funct. Mater. 2021, 31, 2100280.

[32]

Shen, M.; Wang, M.; Wang, Q.; Tian, J. J.; Zhang, L. X.; Wang, L. Z.; Shi, J. L. A Ti-OH bond breaking route for creating oxygen vacancy in titania towards efficient CO2 photoreduction. Chem. Eng. J. 2021, 425, 131513.

[33]

Li, Z. Q.; Peng, Y. Q.; Liu, C. F.; Zhang, X. X.; Li, X. L.; Huang, Y.; Ren, Y. K.; Ji, D. H.; Cao, G. Z. Oxygen-deficient TiO2 yolk–shell spheres for enhanced lithium storage properties. Energy Environ. Mater. 2022, 5, 238–244.

[34]

Huang, H. L.; Hou, X. L.; Xiao, J. R.; Zhao, L.; Huang, Q. Y.; Chen, H.; Li, Y. D. Effect of annealing atmosphere on the performance of TiO2 nanorod arrays in photoelectrochemical water splitting. Catal. Today 2019, 330, 189–194.

[35]

Wang, C.; Yang, J. J.; Li, T. Z.; Shen, Z. H.; Guo, T. L.; Zhang, H. G.; Lu, Z. D. In situ tuning of defects and phase transition in titanium dioxide by lithiothermic reduction. ACS Appl. Mater. Interfaces 2020, 12, 5750–5758.

[36]

Bi, X.; Du, G. H.; Kalam, A.; Sun, D. F.; Yu, Y.; Su, Q. M.; Xu, B. S.; Al-Sehemi, A. G. Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance. Chem. Eng. Sci. 2021, 234, 116440.

[37]

Chen, J.; Zhang, X. Y.; Wang, Z.; Chen, W. X.; Yuan, Q. B.; Wang, Y. F. Laminated ferroelectric polymer composites exhibit synchronous ultrahigh discharge efficiency and energy density via utilizing multiple-interface barriers. J. Mater. Chem. A 2022, 10, 20402–20413.

[38]

Li, J. J.; Seok, S. I.; Chu, B. J.; Dogan, F.; Zhang, Q. M.; Wang, Q. Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv. Mater. 2009, 21, 217–221.

[39]

Wang, Y. F.; Wang, L. X.; Yuan, Q. B.; Niu, Y. J.; Chen, J.; Wang, Q.; Wang, H. Ultrahigh electric displacement and energy density in gradient layer-structured BaTiO3/PVDF nanocomposites with an interfacial barrier effect. J. Mater. Chem. A 2017, 5, 10849–10855.

[40]

Sun, Q. Z.; Wang, J. P.; Sun, H. N.; He, L. Q.; Zhang, L. X.; Mao, P.; Zhang, X. X.; Kang, F.; Wang, Z. P.; Kang, R. R. et al. Simultaneously enhanced energy density and discharge efficiency of layer-structured nanocomposites by reasonably designing dielectric differences between BaTiO3@SiO2/PVDF layers and BNNSs/PVDF-PMMA layers. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106546.

[41]

Birol, H.; Damjanovic, D.; Setter, N. Preparation and characterization of KNbO3 ceramics. J. Am. Ceram. Soc. 2005, 88, 1754–1759.

[42]

Zhao, P.; Fang, Z. X.; Zhang, X. C.; Chen, J. J.; Shen, Y. D.; Zhang, X.; An, Q.; Yang, C. T.; Gao, X. S.; Zhang, S. R. et al. Aliovalent doping engineering for A- and B-Sites with multiple regulatory mechanisms: A strategy to improve energy storage properties of Sr0.7Bi0.2TiO3-based lead-free relaxor ferroelectric ceramics. ACS Appl. Mater. Interfaces 2021, 13, 24833–24855.

[43]

Xu, Y. H.; Yang, Z. D.; Xu, K.; Cao, Y. C.; Tian, Y.; Guo, L. L.; Tian, J. J.; Tian, H.; Liu, X. L.; Lin, L. et al. Modulated band structure and phase transitions in calcium hafnate titanate modified silver niobate ceramics for energy storage. Chem. Eng. J. 2021, 426, 131047.

[44]

Sun, Q. Z.; Mao, P.; Zhang, L. X.; Wang, J. P.; Zhao, Y. Y.; Kang, F. Significantly enhanced dielectric and energy storage performance of AlN/KNbO3/PVDF sandwich-structured composites via introducing the AlN/PVDF insulating layers. Ceram. Int. 2020, 46, 9990–9996.

[45]

Pan, Z. B.; Liu, B. H.; Zhai, J. W.; Yao, L. M.; Yang, K.; Shen, B. NaNbO3 two-dimensional platelets induced highly energy storage density in trilayered architecture composites. Nano Energy 2017, 40, 587–595.

[46]

Pan, Z. B.; Yao, L. M.; Ge, G. L.; Shen, B.; Zhai, J. W. High-performance capacitors based on NaNbO3 nanowires/poly(vinylidene fluoride) nanocomposites. J. Mater. Chem. A 2018, 6, 14614–14622.

[47]

Lin, Y.; Sun, C.; Zhan, S. L.; Zhang, Y. J.; Yuan, Q. B. Ultrahigh discharge efficiency and high energy density in sandwich structure K0.5Na0.5NbO3 nanofibers/poly(vinylidene fluoride) composites. Adv. Mater. Interfaces 2020, 7, 2000033.

[48]

Chen, J. W.; Ye, D. G.; Wu, X. W.; Zhu, W. B.; Wang, X. C.; Xiao, P.; Duan, Z. K.; Yu, X. M. Large enhancement of discharge energy density of polymer nanocomposites filled with one-dimension core–shell structured NaNbO3@SiO2 nanowires. Compos. Part A Appl. Sci. Manuf. 2020, 133, 105832.

[49]

Hu, J.; Liu, L.; Zhang, S. F.; Tang, B. T. Enhancing energy density of dielectric polymer nanocomposites at ultralow filler loadings. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106792.

[50]

Pan, Z. B.; Ding, Q. L.; Yao, L. M.; Huang, S. W.; Xing, S.; Liu, J. J.; Chen, J. W.; Zhai, J. W. Simultaneously enhanced discharge energy density and efficiency in nanocomposite film capacitors utilizing two-dimensional NaNbO3@Al2O3 platelets. Nanoscale 2019, 11, 10546–10554.

[51]

Sun, Q. Z.; Wang, J. P.; Zhang, L. X.; Mao, P.; Liu, S. J.; He, L. Q.; Kang, F.; Xue, R. Achieving high energy density and discharge efficiency in multi-layered PVDF-PMMA nanocomposites composed of 0D BaTiO3 and 1D NaNbO3@SiO2. J. Mater. Chem. C 2020, 8, 7211–7220.

[52]

Li, J. N.; Lin, X. J.; Chen, G. L.; Uwiragiye, E.; Fisher, J. G.; Huang, S. F.; Cheng, X. Enhanced discharged energy density in poly(vinylidene fluoride) composites with a small loading of (K0.5Na0.5)NbO3 particles. Int. J. Energy Res. 2020, 44, 12169–12179.

[53]

Pan, Z. B.; Wang, M. K.; Chen, J. W.; Shen, B.; Liu, J. J.; Zhai, J. W. Largely enhanced energy storage capability of a polymer nanocomposite utilizing a core-satellite strategy. Nanoscale 2018, 10, 16621–16629.

[54]

Liu, Y.; Luo, H.; Zhai, D.; Guo, R.; Zhou, X. F.; Xiao, Z. D.; Xie, H. R.; Zhang, D. Symmetric trilayer dielectric composites with high energy density using a low loading of KNbO3 nanosheets. ACS Sustainable Chem. Eng. 2021, 9, 15983–15994.

Nano Research
Pages 4079-4088
Cite this article:
Wang Y, Zhao L, Chen R, et al. Gradient-structure-enhanced dielectric energy storage performance of flexible nanocomposites containing controlled preparation of defective TiO2 and ferroelectric KNbO3 nanosheets. Nano Research, 2024, 17(5): 4079-4088. https://doi.org/10.1007/s12274-023-6308-4
Topics:

740

Views

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 31 August 2023
Revised: 25 October 2023
Accepted: 02 November 2023
Published: 02 December 2023
© Tsinghua University Press 2023
Return