AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrathin curved PdNiRu nanosheets as bifunctional catalysts for oxygen reduction and ethylene glycol oxidation

Xianzeng Li1,§Tingyu Lu1,§Huan Pang5Mingyi Zhang6Dongdong Xu1,4( )Lin Xu1( )Min Han2( )Jun Yang3( )
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou 350117, China
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China

§ Xianzeng Li and Tingyu Lu contributed equally to this work.

Show Author Information

Graphical Abstract

We presented the facile synthesis of PdNiRu nanosheets (NSs) with ultrathin and highly curved/folded architecture and explored their bifunctional catalytic activities in cathodic oxygen reduction reaction (ORR) and anodic ethylene glycol oxidation reaction (EGOR).

Abstract

Pd-based metallic nanosheets with advanced physicochemical properties have been widely prepared and employed in various electrocatalytic reactions. However, few concerns were focused on their multiple performances in different electrocatalysis. Here, highly curved and ultrathin PdNiRu nanosheets (NSs) are developed by facile wet-chemistry strategy and exhibit excellent electrocatalytic performance toward both oxygen reduction reaction (ORR) and ethylene glycol oxidation reaction (EGOR). Owing to the synergistically structural (e.g., ultrathin, curved, defects/steps-rich) and compositional (ternary alloy) advantages, PdNiRu NSs exhibited enhanced ORR and EGOR specific/mass activities and better stability/durability than control electrocatalysts. The specific activity (5.52 mA·cm−2) and mass activity (1.13 A·mgPd−1) of the PdNiRu NSs in ORR are 4.8 and 3.4 times as the ones of commercial Pt/C, respectively. The mass activity of PdNiRu NSs (3.86 A·mgPd−1) in EGOR is 2.6 times as commercial Pd/C (1.51 A·mgPd−1). This study is helpful for the development of desired electrocatalysts with multi-functional application in practical fuel cells.

Electronic Supplementary Material

Download File(s)
12274_2023_6314_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Zhou, T. P.; Xu, W. F.; Zhang, N.; Du, Z. Y.; Zhong, C. A.; Yan, W. S.; Ju, H. X.; Chu, W. S.; Jiang, H.; Wu, C. Z. et al. Ultrathin cobalt oxide layers as electrocatalysts for high-performance flexible Zn-Air batteries. Adv. Mater. 2019, 31, 1807468.

[2]

Li, R. S.; Wu, D. X.; Rao, P.; Deng, P. L.; Li, J.; Luo, J. M.; Huang, W.; Chen, Q.; Kang, Z. Y.; Shen, Y. J. et al. General approach for atomically dispersed precious metal catalysts toward hydrogen reaction. Carbon Energy 2023, 5, e294.

[3]

Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang, J. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy 2022, 1, 9120017.

[4]

Zhang, Z. B.; Li, J.; Liu, S. Y.; Zhou, X.; Xu, L.; Tian, X. L.; Yang, J.; Tang, Y. W. Self-templating-oriented manipulation of ultrafine Pt3Cu alloyed nanoparticles into asymmetric porous bowl-shaped configuration for high-efficiency methanol electrooxidation. Small 2022, 18, 2202782.

[5]

Wang, K. X.; Wang, S.; Hui, K. S.; Gao, H. X.; Dinh, D. A.; Yuan, C. Z.; Zha, C. Y.; Shao, Z. P.; Tang, Z. K.; Hui, K. N. Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo2C/NC-Ru for highly efficient alkaline hydrogen evolution. Carbon Energy 2022, 4, 856–866.

[6]

Xiao, W. P.; Liutheviciene Cordeiro, M. A.; Gong, M. X.; Han, L. L.; Wang, J.; Bian, C.; Zhu, J.; Xin, H. L.; Wang, D. L. Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size. J. Mater. Chem. A 2017, 5, 9867–9872.

[7]

Jiang, X.; Xiong, Y. X.; Zhao, R. P.; Zhou, J. C.; Lee, J. M.; Tang, Y. W. Trimetallic Au@PdPb nanowires for oxygen reduction reaction. Nano Res. 2020, 13, 2691–2696.

[8]

Zhang, J.; Yin, S.; Yin, H. M. Strain engineering to enhance the oxidation reduction reaction performance of atomic-layer Pt on nanoporous gold. ACS Appl. Energy Mater. 2020, 3, 11956–11963.

[9]

Chang, Q. W.; Xu, Y.; Zhu, S. Q.; Xiao, F.; Shao, M. H. Pt-Ni nanourchins as electrocatalysts for oxygen reduction reaction. Front. Energy 2017, 11, 254–259.

[10]

Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 2019, 31, 1802234.

[11]

Zhang, Q. Q.; Xia, T. Y.; Huang, H.; Liu, J. L.; Zhu, M. Y.; Yu, H.; Xu, W. F.; Huo, Y. P.; He, C. L.; Shen, S. P. et al. Autocatalytic reduction-assisted synthesis of segmented porous PtTe nanochains for enhancing methanol oxidation reaction. Nano Res. Energy 2023, 2, e9120041.

[12]

Han, S. H.; Li, Z. B.; Zhang, Y. J.; Lei, D. N.; Wang, C. X. In-situ formation of a nanoscale lithium aluminum alloy in lithium metal for high-load battery anode. Energy Storage Mater. 2022, 48, 384–392

[13]

Xu, X. H.; Ozden, S.; Bizmark, N.; Arnold, C. B.; Datta, S. S.; Priestley, R. D. A bioinspired elastic hydrogel for solar-driven water purification. Adv. Mater. 2021, 33, 2007833.

[14]

Chen, A. C.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999–12044.

[15]

Wang, H. J.; Yin, S. L.; Li, Y. H.; Yu, H. J.; Li, C. J.; Deng, K.; Xu, Y.; Li, X. N.; Xue, H. R.; Wang, L. One-step fabrication of tri-metallic PdCuAu nanothorn assemblies as an efficient catalyst for oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 3642–3648.

[16]

Lu, X. Y.; Ahmadi, M.; DiSalvo, F. J.; Abruña, H. D. Enhancing the electrocatalytic activity of Pd/M (M = Ni, Mn) nanoparticles for the oxygen reduction reaction in alkaline media through electrochemical dealloying. ACS Catal. 2020, 10, 5891–5898.

[17]

Sun, D.; Wang, Y. F.; Livi, K. J. T.; Wang, C. H.; Luo, R. C.; Zhang, Z. Q.; Alghamdi, H.; Li, C. Y.; An, F. F.; Gaskey, B. et al. Correction to “ordered intermetallic Pd3Bi prepared by an electrochemically induced phase transformation for oxygen reduction electrocatalysis”. ACS Nano 2021, 15, 20691.

[18]

Wang, H. W.; Luo, W. J.; Zhu, L. J.; Zhao, Z. P.; E, B.; Tu, W. Z.; Ke, X. X.; Sui, M. L.; Chen, C. F.; Chen, Q. et al. Synergistically enhanced oxygen reduction electrocatalysis by subsurface atoms in ternary PdCuNi alloy catalysts. Adv. Funct. Mater. 2018, 28, 1707219.

[19]

Gong, M. X.; Shen, T.; Deng, Z. P.; Yang, H. Y.; Li, Z. R.; Zhang, J. J.; Zhang, R.; Hu, Y. Z.; Zhao, X.; Xin, H. L. et al. Surface engineering of PdFe ordered intermetallics for efficient oxygen reduction electrocatalysis. Chem. Eng. J. 2021, 408, 127297.

[20]

Xu, G. R.; Han, C. C.; Zhu, Y. Y.; Zeng, J. H.; Jiang, J. X.; Chen, Y. PdCo alloy nanonetworks-polyallylamine inorganic-organic nanohybrids toward the oxygen reduction reaction. Adv. Mater. Interfaces 2018, 5, 1701322.

[21]

Sahoo, L.; Garg, R.; Kaur, K.; Vinod, C. P.; Gautam, U. K. Ultrathin twisty PdNi alloy nanowires as highly active ORR electrocatalysts exhibiting morphology-induced durability over 200 K Cycles. Nano Lett. 2022, 22, 246–254.

[22]

Huang, W. J.; Kang, X. L.; Xu, C.; Zhou, J. H.; Deng, J.; Li, Y. G.; Cheng, S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 2018, 30, 1706962

[23]

Hu, T. J.; Wang, Y.; Xiao, H.; Chen, W. W.; Zhao, M.; Jia, J. F. Shape-control of super-branched Pd-Cu alloys with enhanced electrocatalytic performance for ethylene glycol oxidation. Chem. Commun. 2018, 54, 13363–13366.

[24]

Bu, L. Z.; Shao, Q.; Pi, Y. C.; Yao, J. L.; Luo, M. C.; Lang, J. P.; Hwang, S.; Xin, H. L.; Huang, B. L.; Guo, J. et al. Coupled s-p-d exchange in facet-controlled Pd3Pb tripods enhances oxygen reduction catalysis. Chem 2018, 4, 359–371.

[25]

Liu, S. L.; Zhang, Q. H.; Li, Y. F.; Han, M.; Gu, L.; Nan, C. W.; Bao, J. C.; Dai, Z. H. Five-fold twinned Pd2NiAg nanocrystals with increased surface Ni site availability to improve oxygen reduction activity. J. Am. Chem. Soc. 2015, 137, 2820–2823.

[26]

Ji, X. D.; Gao, P.; Zhang, L. B.; Wang, X. R.; Wang, F. H.; Zhu, H.; Yu, J. H. High-performance ordered PdCuFe/C intermetallic catalyst for electrochemical oxygen reduction in proton exchange membrane fuel cells. ChemElectroChem 2019, 6, 3065–3070.

[27]

Liu, X. J.; Yin, X.; Sun, Y. D.; Yu, F. J.; Gao, X. W.; Fu, L. J.; Wu, Y. P.; Chen, Y. H. Interlaced Pd-Ag nanowires rich in grain boundary defects for boosting oxygen reduction electrocatalysis. Nanoscale 2020, 12, 5368–5373.

[28]

Yang, Y.; Soroka, I. L. PdNi nanoframework and nanochain catalysts with enhanced oxygen reduction reaction performance. ChemCatChem 2022, 14, e202200941.

[29]

Mir, S. H.; Hasan, P. M. Z.; Danish, E. Y.; Aslam, M. Pd-induced phase separation in poly(methyl methacrylate) telopolymer: Synthesis of nanostructured catalytic Pd nanorods. Colloid Polym. Sci. 2020, 298, 441–448.

[30]

Jung, W. B.; Park, H.; Jang, J. S.; Kim, D. Y.; Kim, D. W.; Lim, E.; Kim, J. Y.; Choi, S.; Suk, J.; Kang, Y. K. et al. Polyelemental nanoparticles as catalysts for a Li-O2 battery. ACS Nano 2021, 15, 4235–4244.

[31]

Wang, L.; Zeng, Z. H.; Gao, W. P.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X. Q.; Wang, C.; Greeley, J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019, 363, 870–874.

[32]

Fan, F. R.; Wang, R. X.; Zhang, H.; Wu, W. Z. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem. Soc. Rev. 2021, 50, 10983–11031.

[33]

Liu, Y. D.; Dinh, K. N.; Dai, Z. F.; Yan, Q. Y. Metallenes: Recent advances and opportunities in energy storage and conversion applications. ACS Materials Lett. 2020, 2, 1148–1172.

[34]

Zhang, Y.; Li, L. B.; Guo, S. X.; Zhang, X. L.; Li, F. W.; Bond, A. M.; Zhang, J. Two-dimensional electrocatalysts for efficient reduction of carbon dioxide. ChemSusChem 2020, 13, 59–77.

[35]

Bai, S.; Xiong, Y. J. Recent advances in two-dimensional nanostructures for catalysis applications. Sci. Adv. Mater. 2015, 7, 2168–2181.

[36]

Chandrasekaran, S.; Ma, D. T.; Ge, Y. Q.; Deng, L. B.; Bowen, C.; Roscow, J.; Zhang, Y.; Lin, Z. Q.; Misra, R. D. K.; Li, J. Q. et al. Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy 2020, 77, 105080.

[37]

Meng, X. Y.; Deng, D. H. Two-dimensional materials for electrocatalytic water splitting. Chin. Sci. Bull. 2017, 62, 3154–3172.

[38]

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

[39]

Guo, J. C.; Gao, L.; Tan, X.; Yuan, Y. L.; Kim, J.; Wang, Y.; Wang, H.; Zeng, Y. J.; Choi, S. I.; Smith, S. C. et al. Template-directed rapid synthesis of Pd-based ultrathin porous intermetallic nanosheets for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 10942–10949.

[40]

Qin, Y. C.; Zhang, W. L.; Wang, F. Q.; Li, J. J.; Ye, J. Y.; Sheng, X.; Li, C. X.; Liang, X. Y.; Liu, P.; Wang, X. P. et al. Extraordinary p-d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C-C bond cleavage of ethylene glycol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202200899.

[41]

Zhang, D.; Zhang, C. Y.; Gao, H. X.; Sui, J.; Sui, N.; Wang, L. N.; Liu, M. H.; Yu, W. W. Plasmon-driven photothermal conversion with two-dimensional ultra-thin PdFe nanosheets for ethylene glycol electrooxidation. Plasmonics 2021, 16, 777–786.

[42]

Zhang, L. Y.; Wang, F. Q.; Wang, S.; Huang, H. W.; Meng, X. M.; Ouyang, Y. R.; Yuan, W. Y.; Guo, C. X.; Li, C. M. Layered and heterostructured Pd/PdWCr sheet-assembled nanoflowers as highly active and stable electrocatalysts for formic acid oxidation. Adv. Funct. Mater. 2020, 30, 2003933.

[43]

Zhang, D.; Zhao, H.; Huang, B. L.; Li, B.; Li, H. D.; Han, Y.; Wang, Z. C.; Wu, X. K.; Pan, Y.; Sun, Y. J. et al. Advanced ultrathin RuPdM (M = Ni, Co, Fe) nanosheets electrocatalyst boosts hydrogen evolution. ACS Cent. Sci. 2019, 5, 1991–1997.

[44]

Yuan, M. Y.; Xu, H.; Wang, Y.; Jin, L. J.; Wang, C.; Chen, C. Y.; Wang, Y.; Shang, H. Y.; Du, Y. K. Three-dimensional PdCuRu alloy porous nanosheets as efficient electrocatalysts for hydrogen evolution reaction in varied electrolytes. ChemElectroChem 2020, 7, 3135–3139.

[45]

Sial, M. A. Z. G.; Din, M. A. U.; Wang, X. Multimetallic nanosheets: Synthesis and applications in fuel cells. Chem. Soc. Rev. 2018, 47, 6175–6200.

[46]

Huang, S. D.; Lu, S. L.; Gong, S.; Zhang, Q. J.; Duan, F.; Zhu, H.; Gu, H. W.; Dong, W. F.; Du, M. L. Sublayer stable Fe dopant in porous Pd metallene boosts oxygen reduction reaction. ACS Nano 2022, 16, 522–532.

[47]

Wang, C. Y.; Schechter, A.; Feng, L. G. Iridium-based catalysts for oxygen evolution reaction in acidic media: Mechanism, catalytic promotion effects and recent progress. Nano Res. Energy 2023, 2, e9120056.

[48]

Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.

[49]

Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, L.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712–8717.

[50]

Zuo, Y. P.; Rao, D. W.; Li, S.; Li, T. T.; Zhu, G. L.; Chen, S. M.; Song, L.; Chai, Y.; Han, H. Y. Atomic vacancies control of Pd-based catalysts for enhanced electrochemical performance. Adv. Mater. 2018, 30, 1704171.

[51]

Jiang, L. L.; Xu, S. S.; Xia, B. K.; Chen, S.; Zhu, J. W. Defect engineering of graphene hybrid catalysts for oxygen reduction reactions. J. Inorg. Mater. 2022, 37, 215–222.

[52]

Tao, Y. Y.; Liang, X.; Xu, G. C.; Li, D. W.; Li, Y.; Zhang, N.; Chen, Y. Z.; Jiang, X. F.; Gong, H. Y. Self-supported defect-rich Au-based nanostructures as robust bifunctional catalysts for the methanol oxidation reaction and oxygen reduction reaction in an alkaline medium. Nanomater 2021, 11, 2193.

[53]

Bampos, G.; Sygellou, L.; Bebelis, S. Oxygen reduction reaction activity of Pd-based bimetallic electrocatalysts in alkaline medium. Catal. Today 2020, 355, 685–697.

[54]

Xiong, L.; Manthiram, A. Nanostructured Pt-M/C (M = Fe and Co) catalysts prepared by a microemulsion method for oxygen reduction in proton exchange membrane fuel cells. Electrochim. Acta 2005, 50, 2323–2329.

[55]

Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

[56]

Zhang, Z. C.; Liu, Y.; Chen, B.; Gong, Y.; Gu, L.; Fan, Z. X.; Yang, N. L.; Lai, Z. C.; Chen, Y.; Wang, J. et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Adv. Mater. 2016, 28, 10282–10286.

[57]

Wang, Z. Q.; Li, C. J.; Deng, K.; Xu, Y.; Xue, H. R.; Li, X. N.; Wang, L.; Wang, H. J. Ambient nitrogen reduction to ammonia electrocatalyzed by bimetallic PdRu porous nanostructures. ACS Sustain. Chem. Eng. 2019, 7, 2400–2405.

[58]

Mayrhofer, K. J. J.; Strmcnik, D.; Blizanac, B. B.; Stamenkovic, V.; Arenz, M.; Markovic, N. M. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 2008, 53, 3181–3188.

[59]

Zhang, Z. Y.; Liu, S. S.; Tian, X.; Wang, J.; Xu, P.; Xiao, F.; Wang, S. Facile synthesis of N-doped porous carbon encapsulated bimetallic PdCo as a highly active and durable electrocatalyst for oxygen reduction and ethanol oxidation. J. Mater. Chem. A 2017, 5, 10876–10884.

[60]

Feng, Y. G.; Yang, C. Y.; Fang, W.; Huang, B. L.; Shao, Q.; Huang, X. Q. Anti-poisoned oxygen reduction by the interface modulated Pd@NiO core@shell. Nano Energy 2019, 58, 234–243.

[61]

Yu, Z. Y.; Xu, S. L.; Feng, Y. G.; Yang, C. Y.; Yao, Q.; Shao, Q.; Li, Y. F.; Huang, X. Q. Phase-controlled synthesis of Pd-Se nanocrystals for phase-dependent oxygen reduction catalysis. Nano Lett. 2021, 21, 3805–3812.

[62]

Din, M. A. U.; Saleem, F.; Ni, B.; Yong, Y.; Wang, X. Porous tetrametallic PtCuBiMn nanosheets with a high catalytic activity and methanol tolerance limit for oxygen reduction reactions. Adv. Mater. 2017, 29, 1604994.

[63]

Liang, J. S.; Li, S. Z.; Chen, Y. W.; Liu, X.; Wang, T. Y.; Han, J. T.; Jiao, S. H.; Cao, R. G.; Li, Q. Ultrathin and defect-rich intermetallic Pd2Sn nanosheets for efficient oxygen reduction electrocatalysis. J. Mater. Chem. A 2020, 8, 15665–15669.

[64]

Zhang, Y.; Huang, B. L.; Luo, G.; Sun, T.; Feng, Y. G.; Wang, Y. C.; Ma, Y. H.; Shao, Q.; Li, Y. F.; Zhou, Z. Y. et al. Atomically deviated Pd-Te nanoplates boost methanol-tolerant fuel cells. Sci. Adv. 2020, 6, eaba9731.

[65]

Lv, J. Q.; Lang, Z. L.; Fu, J. Q.; Lan, Q.; Liu, R. J.; Zang, H. Y.; Li, Y. G.; Ye, D. D.; Streb, C. Molecular iron oxide clusters boost the oxygen reduction reaction of platinum electrocatalysts at near-neutral pH. Angew. Chem., Int. Ed. 2022, 61, e202202650.

[66]

Chen, H.; Shuang, H. L.; Lin, W. W.; Li, X. X.; Zhang, Z. H.; Li, J.; Fu, J. Tuning interfacial electronic properties of palladium oxide on vacancy-abundant carbon nitride for low-temperature dehydrogenation. ACS Catal. 2021, 11, 6193–6199.

[67]

Zhao, F. L.; Zheng, L. R.; Yuan, Q.; Yang, X. T.; Zhang, Q. H.; Xu, H.; Guo, Y. L.; Yang, S.; Zhou, Z. Y.; Gu, L. et al. Ultrathin PdAuBiTe nanosheets as high-performance oxygen reduction catalysts for a direct methanol fuel cell device. Adv. Mater. 2021, 33, 2103383.

[68]

Yu, H. J.; Zhou, T. Q.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Defect-rich porous palladium metallene for enhanced alkaline oxygen reduction electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12027–12031.

[69]

Ren, F. F.; Wang, H. W.; Zhai, C. Y.; Zhu, M. S.; Yue, R. R.; Du, Y. K.; Yang, P.; Xu, J. K.; Lu, W. S. Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium. ACS Appl. Mater. Interfaces 2014, 6, 3607–3614.

Nano Research
Pages 3777-3784
Cite this article:
Li X, Lu T, Pang H, et al. Ultrathin curved PdNiRu nanosheets as bifunctional catalysts for oxygen reduction and ethylene glycol oxidation. Nano Research, 2024, 17(5): 3777-3784. https://doi.org/10.1007/s12274-023-6314-6
Topics:

833

Views

2

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 03 August 2023
Revised: 20 October 2023
Accepted: 03 November 2023
Published: 02 December 2023
© Tsinghua University Press 2023
Return