AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A lightweight and high compressive resistance thermal insulation material with dual-network structure

Mengmeng Yang1Zhaofeng Chen1( )Yang Ding1Wu Qiong1Tianlong Liu1Manna Li1Lixia Yang1Sheng Cui2
School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
Show Author Information

Graphical Abstract

In this paper, a novel composite ceramic aerogel with arch-like and honeycomb-like cellular structure was prepared by assisting vacuum filtration and freezing-dry approach. Quasi layered multi arch structure endow aerogel with excellent mechanical robustness and super elasticity. Honeycomb structure and aerogel nanoparticles with infinite heat transfer path endow the composite aerogel with excellent thermal insulation performance. The aerogel also shows good thermal stability, ranging from −196 °C in liquid nitrogen to more than 1100 °C in butane burner, and good thermal insulation performance with a thermal conductivity of 24 mW/(m·k). These comprehensive properties make aerogel a promising candidate with mechanical strength and efficient elastic insulation materials.

Abstract

Ceramic fibrous aerogels are highly desirable for thermal management materials due to their high porosity, excellent elasticity, thermal conductivity, and good thermal resistance. However, the fabrication of nanofibrous aerogel with super-elasticity and good shape retention at the same time has remained challenging. To meet the requirements, a novel anisotropy nanofibrous-granular aerogel with a quasi-layered multi-arch-like and hierarchical-cellular structure is designed and prepared by vacuum-filtration-assisted freeze-drying and sintering. The quasi-layered multi-arch and flexible nanofibers endowed the aerogels with excellent mechanical robustness (ultimate stress up to 60 kPa with strain 60%) and super-elasticity with recoverable compression strain up to 60%. The introduced SiO2 aerogel nanoparticles and nanofibers are assembled into an arch-like structure and become the connection point of adjacent nanofibers, which endows low thermal conductivity (0.024 mW/(m·K)) of composite aerogel. This novel strategy provides a fresh perspective for the preparation of nanofibrous aerogel with robust mechanical in thermal insulation and other fields.

Electronic Supplementary Material

Download File(s)
12274_2023_6315_MOESM1_ESM.pdf (866.7 KB)

References

[1]

Xu, X.; Zhang, Q. Q.; Hao, M. L.; Hu, Y.; Lin, Z. Y.; Peng, L. L.; Wang, T.; Ren, X. X.; Wang, C.; Zhao, Z. P. et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science 2019, 363, 723–727.

[2]

Dou, L. Y.; Zhang, X. X.; Cheng, X. T.; Ma, Z. M.; Wang, X. Q.; Si, Y.; Yu, J. Y.; Ding, B. Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 2019, 11, 29056–29064.

[3]

Zhang, E. S.; Zhang, W. L.; Lv, T.; Li, J.; Dai, J. X.; Zhang, F.; Zhao, Y. M.; Yang, J. Y.; Li, W. J.; Zhang, H. Insulating and robust ceramic nanorod aerogels with high-temperature resistance over 1400 °C. ACS Appl. Mater. Interfaces 2021, 13, 20548–20558.

[4]

Ji, Q. Y.; Zhang, L.; Jiao, X. L.; Chen, D. R. Alpha Al2O3 nanosheet-based biphasic aerogels with high-temperature resistance up to 1600 °C. ACS Appl. Mater. Interfaces 2023, 15, 6848–6858.

[5]

An, L.; Wang, J. Y.; Petit, D.; Armstrong, J. N.; Hanson, K.; Hamilton, J.; Souza, M.; Zhao, D. H.; Li, C. M.; Liu, Y. Z.; Huang, Y. L. et al. An all-ceramic, anisotropic, and flexible aerogel insulation material. Nano Lett. 2020, 20, 3828–3835.

[6]

Zhang, X. X.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chem. Eng. J. 2022, 433, 133628.

[7]

Su, L.; Wang, H. J.; Niu, M.; Dai, S.; Cai, Z. X.; Yang, B. G.; Huyan, H. X.; Pan, X. Q. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 2020, 6, eaay6689.

[8]

Liu, S.; Dun, C. C.; Wei, J. L.; An, L.; Ren, S. Q.; Urban, J. J.; Swihart, M. T. Creation of hollow silica-fiberglass soft ceramics for thermal insulation. Chem. Eng. J. 2023, 454, 140134.

[9]

Wang, H. L.; Zhang, X.; Wang, N.; Li, Y.; Feng, X.; Huang, Y.; Zhao, C. S.; Liu, Z. L.; Fang, M. H.; Ou, G. et al. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges. Sci. Adv. 2017, 3, e1603170.

[10]

Dong, J. H.; Xie, Y. S.; Liu, L. X.; Deng, Z. Z.; Liu, W.; Zhu, L. Y.; Wang, X. Q.; Xu, D.; Zhang, G. H. Lightweight and resilient ZrO2-TiO2 fiber sponges with layered structure for thermal insulation. Adv. Eng. Mater. 2022, 24, 2101603.

[11]

Joo Jeong, Y.; Islam, M. F. Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes. Nanoscale 2015, 7, 12888–12894.

[12]

Lu, D.; Zhuang, L.; Zhang, J. J.; Su, L.; Niu, M.; Yang, Y. H.; Xu, L.; Guo, P. F.; Cai, Z. X.; Li, M. Z. et al. Lightweight and strong ceramic network with exceptional damage tolerance. ACS Nano 2023, 17, 1166–1173.

[13]

Zhang, X. X.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano 2022, 16, 5487–5495.

[14]

Peng, Y.; Xie, Y. S.; Wang, L.; Liu, L. X.; Zhu, S. L.; Ma, D. H.; Zhu, L. Y.; Zhang, G. H.; Wang, X. Q. High-temperature flexible, strength and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation. J. Eur. Ceram. Soc. 2021, 41, 1471–1480.

[15]

Guo, J. R.; Fu, S. B.; Deng, Y. P.; Xu, X.; Laima, S.; Liu, D. Z.; Zhang, P. Y.; Zhou, J.; Zhao, H.; Yu, H. X. et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 2022, 606, 909–916.

[16]

Si, Y.; Wang, X. Q.; Dou, L. Y.; Yu, J. Y.; Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 2018, 4, eaas8925.

[17]

Jia, C.; Li, L.; Liu, Y.; Fang, B.; Ding, H.; Song, J. N.; Liu, Y. B.; Xiang, K. J.; Lin, S.; Li, Z. W. et al. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 2020, 11, 3732

[18]

Yan, M. Y.; Cheng, X. D.; Shi, L.; Pan, Y. L.; He, P.; Zhang, Z. X.; Lun, Z. Y.; Fu, Y. Y.; Zhang, H. P. Bioinspired sic aerogels for super thermal insulation and adsorption with super-elasticity over 100,000 times compressions. Chem. Eng. J. 2023, 455, 140616.

[19]

Zong, D. D.; Bai, W. Y.; Yin, X.; Yu, J. Y.; Zhang, S. C.; Ding, B. Gradient pore structured elastic ceramic nanofiber aerogels with cellulose nanonets for noise absorption. Adv. Funct. Mater. 2023, 31, 2301870.

[20]

Dou, L. Y.; Si, Y.; Yu, J. Y.; Ding, B. Semi-template based, biomimetic-architectured, and mechanically robust ceramic nanofibrous aerogels for thermal insulation. Nano Res. 2022, 15, 5581–5589.

[21]

Han, Z. M.; Sun, W. B.; Yang, K. P.; Yang, H. B.; Liu, Z. X.; Li, D. H.; Yin, C. H.; Liu, H. C.; Zhao, Y. X.; Ling, Z. C. et al. An all-natural wood-inspired aerogel. Angew. Chem., Int. Ed. 2023, 62, e202211099.

[22]

Shao, G. F.; Hanaor, D. A. H.; Shen, X. D.; Gurlo, A. Freeze casting: From low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 2020, 32, 1907176.

[23]

Cao, L. T.; Shan, H. R.; Zong, D. D.; Yu, X.; Yin, X.; Si, Y.; Yu, J. Y.; Ding, B. Fire-resistant and hierarchically structured elastic ceramic nanofibrous aerogels for efficient low-frequency noise reduction. Nano Lett. 2022, 22, 1609–1617.

[24]

Zong, D. D.; Cao, L. T.; Yin, X.; Si, Y.; Zhang, S. C.; Yu, J. Y.; Ding, B. Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nat. Commun. 2021, 12, 6599.

[25]

Song, J. W.; Chen, C. J.; Yang, Z.; Kuang, Y. D.; Li, T.; Li, Y. J.; Huang, H.; Kierzewski, I.; Liu, B. Y.; He, S. M. et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 2018, 12, 140–147.

[26]

Peng, F.; Jiang, Y. G.; Feng, J.; Cai, H. F.; Feng, J. Z.; Li, L. J. Thermally insulating, fiber-reinforced alumina-silica aerogel composites with ultra-low shrinkage up to 1500 °C. Chem. Eng. J. 2021, 411, 128402.

[27]

Xu, X.; Fu, S. B.; Guo, J. R.; Li, H.; Huang, Y.; Duan, X. F. Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Mater. Today 2021, 42, 162–177.

[28]

Liu, F. Q.; He, C. B.; Jiang, Y. G.; Yang, Y. P.; Peng, F.; Liu, L. F.; Men, J.; Feng, J. Z.; Li, L. J.; Tang, G. H. et al. Carbon layer encapsulation strategy for designing multifunctional core–shell nanorod aerogels as high-temperature thermal superinsulators. Chem. Eng. J. 2023, 455, 140502.

[29]

Li, L.; Zhou, Y. Q.; Gao, Y.; Feng, X. N.; Zhang, F. S.; Li, W. W.; Zhu, B.; Tian, Z.; Fan, P. X.; Zhong, M. L. et al. Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition. Nat. Commun. 2023, 14, 5410.

[30]

Zhang, J. Y.; Cheng, Y. H.; Tebyetekerwa, M.; Meng, S.; Zhu, M. F.; Lu, Y. F. “Stiff-soft” binary synergistic aerogels with superflexibility and high thermal insulation performance. Adv. Funct. Mater. 2019, 29, 1806407.

[31]

Yang, M. M.; Yang, L. X.; Chen, Z. F.; Wu, Q.; Wang, Y. P.; Liu, T. L.; Li, M. N. Flexible electrospun strawberry-like structure SiO2 aerogel nanofibers for thermal insulation. Ceram. Int. 2023, 49, 9165–9172

[32]

Zheng, Y.; Chen, S.; Lu, H. Y.; Zhang, C.; Liu, T. X. 3D honeycombed cobalt, nitrogen co-doped carbon nanosheets via hypersaline-protected pyrolysis towards efficient oxygen reduction. Nanotechnology 2020, 31, 364003

[33]

Guo, P. L.; Li, J.; Pang, S. Y.; Hu, C. L.; Tang, S. F.; Cheng, H. M. Ultralight carbon fiber felt reinforced monolithic carbon aerogel composites with excellent thermal insulation performance. Carbon 2021, 183, 525–529.

[34]

He, J.; Li, X. L.; Su, D.; Ji, H. M.; Qiao, Y. C. High-strength mullite fibers reinforced ZrO2-SiO2 aerogels fabricated by rapid gel method. J. Mater. Sci. 2015, 50, 7488–7494.

[35]

Zhang, X. S.; Xu, N. N.; Jiang, Y. G.; Liu, H. Y.; Xu, H.; Han, C.; Wang, B.; Wang, Y. D. Robust, fire-resistant, and thermal-stable SiZrNOC nanofiber membranes with amorphous microstructure for high-temperature thermal superinsulation. J. Adv. Ceram. 2023, 12, 36–48.

[36]

Zhou, N.; Xu, B. S.; Zhou, Z. L.; Qu, L. J.; Wang, Y. G.; Han, W. B.; Fang, D. N. Lightweight quasi-layered elastic fibrous porous ceramics with high compressive stress and low thermal conductivity. J. Mater. Sci. Technol. 2023, 143, 207–215.

[37]

Chen, Y. X.; Klima, K. M.; Brouwers, H. J. H.; Yu, Q. L. Effect of silica aerogel on thermal insulation and acoustic absorption of geopolymer foam composites: The role of aerogel particle size. Compos. Part B 2022, 242, 110048.

[38]

Tong, Z. W.; Zhang, B. J.; Yu, H. J.; Yan, X. J.; Xu, H.; Li, X. L.; Ji, H. M. Si3N4 nanofibrous aerogel with in situ growth of SiO x coating and nanowires for oil/water separation and thermal insulation. ACS Appl. Mater. Interfaces 2021, 13, 22765–22773.

[39]

Zhang, X. H.; Lei, Y.; Li, C. X.; Sun, G.; You, B. Superhydrophobic and multifunctional aerogel enabled by bioinspired salvinia leaf-like structure. Adv. Funct. Mater. 2022, 32, 2110830.

[40]

Zhang, J. Y.; Cheng, Y. H.; Xu, C. J.; Gao, M. Y.; Zhu, M. F.; Jiang, L. Hierarchical interface engineering for advanced nanocellulosic hybrid aerogels with high compressibility and multifunctionality. Adv. Funct. Mater. 2021, 31, 2009349.

Nano Research
Pages 4279-4287
Cite this article:
Yang M, Chen Z, Ding Y, et al. A lightweight and high compressive resistance thermal insulation material with dual-network structure. Nano Research, 2024, 17(5): 4279-4287. https://doi.org/10.1007/s12274-023-6315-5
Topics:

729

Views

2

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 07 September 2023
Revised: 13 October 2023
Accepted: 03 November 2023
Published: 05 December 2023
© Tsinghua University Press 2023
Return