Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Luminescence quench is common in overdoped upconversion nanoparticles. Various methods have been proposed to counteract the adverse effects of concentration quenching on luminescence, but in upconversion nanoparticles that are highly doped with both sensitizers and activators, the factors that contribute to the diminishing of the emission cannot be summarized by a single cause. Herein, a core–shell design is used to spatially separate the sensitizer (Yb3+) and activator (Er3+) and to modulate the emission by changes in the distribution position as well as the concentration of the dopant ions in order to probe the factors affecting the luminescence. When the sensitizer ions are located in the core, the luminescence intensity of the nanoparticles is significantly weaker than that of the other distribution, which implies that the effect of sensitizer and activator on luminescence in the highly doped state has a different and more complex mechanism. The intensity of the emission is more affected by Yb3+ than Er3+, which includes not only the self-quenching of Yb3+, but also the dominance in the Yb3+–Er3+ cross-relaxation. In this finding may provide new ideas for revealing the reasons for the diminished luminescence of highly doped upconversion nanoparticles and thus for enhancing luminescence.
Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.
Bettinelli, M.; Carlos, L.; Liu, X. G. Lanthanide-doped upconversion nanoparticles: A new class of nanomaterials that convert near-IR radiation into tunable visible light has important implications for many fields of science and technology. Phys. Today 2015, 68, 38–44.
Bünzli, J. C. G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077.
Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415.
Liang, Y.; Liu, Y. L.; Lei, P. P.; Zhang, Z.; Zhang, H. J. Tumor microenvironment-responsive modular integrated nanocomposites for magnetically targeted and photothermal enhanced catalytic therapy. Nano Res. 2023, 16, 9826–9834.
Gao, X.; Feng, J.; Lv, K. H.; Zhou, Y. F.; Zhang, R. H.; Song, S. Y.; Zhang, H. J.; Wang, D. G. Engineering CeO2/CuO heterostructure anchored on upconversion nanoparticles with boosting ROS generation-primed apoptosis-ferroptosis for cancer dynamic therapy. Nano Res. 2023, 16, 5322–5334.
Liu, H. Y.; Li, J. B.; Hu, P. F.; Sun, S. Q.; Shi, L. Y.; Sun, L. N. Facile synthesis of Er3+/Tm3+ co-doped magnetic/luminescent nanosystems for possible bioimaging and therapy applications. J. Rare Earths 2022, 40, 11–19.
Lee, J.; Bisso, P. W.; Srinivas, R. L.; Kim, J. J.; Swiston, A. J.; Doyle, P. S. Universal process-inert encoding architecture for polymer microparticles. Nat. Mater. 2014, 13, 524–529.
Huang, J. S.; An, Z. C.; Yan, L.; Zhou, B. Engineering orthogonal upconversion through selective excitation in a single nanoparticle. Adv. Funct. Mater. 2023, 33, 2212037.
Zhuang, Y. X.; Lv, Y.; Wang, L.; Chen, W. W.; Zhou, T. L.; Takeda, T.; Hirosaki, N.; Xie, R. J. Trap depth engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications. ACS Appl. Mater. Interfaces 2018, 10, 1854–1864.
Ruan, J. F.; Yang, Z. W.; Huang, A. J.; Zhang, H. L.; Qiu, J. B.; Song, Z. G. Thermomchromic reaction-induced reversible upconversion emission modulation for switching devices and tunable upconversion emission based on defect engineering of WO3: b3+,Er3+ phosphor. ACS Appl. Mater. Interfaces 2018, 10, 14941–14947.
Xie, Y.; Sun, G. T.; Li, J. W.; Sun, L. N. Multimode emission from lanthanide-based metal-organic frameworks for advanced information encryption. Adv. Funct. Mater. 2023, 33, 2303663.
Chen, B.; Wang, F. Combating concentration quenching in upconversion nanoparticles. Acc. Chem. Res. 2020, 53, 358–367.
Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829.
Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.
Gargas, D. J.; Chan, E. M.; Ostrowski, A. D.; Aloni, S.; Altoe, M. V. P.; Barnard, E. S.; Sanii, B.; Urban, J. J.; Milliron, D. J.; Cohen, B. E. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 2014, 9, 300–305.
Zhao, J. B.; Jin, D. Y.; Schartner, E. P.; Lu, Y. Q.; Liu, Y. J.; Zvyagin, A. V.; Zhang, L. X.; Dawes, J. M.; Xi, P.; Piper, J. A.; et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 2013, 8, 729–734.
Wu, K. F.; Wang, E. H.; Yuan, J.; Zuo, J.; Zhou, D.; Zhao, H. F.; Luo, Y. S.; Zhang, L. G.; Li, B.; Zhang, J. H. et al. Cross relaxation channel tailored temperature response in Er3+-rich upconversion nanophosphor. Angew. Chem., Int. Ed. 2023, 62, e202306585.
Deng, R. R.; Qin, F.; Chen, R. F.; Huang, W.; Hong, M. H.; Liu, X. G. Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 2015, 10, 237–242.
Xie, X. J.; Gao, N. Y.; Deng, R. R.; Sun, Q.; Xu, Q. H.; Liu, X. G. Mechanistic investigation of photon upconversion in Nd3+-sensitized core–shell nanoparticles. J. Am. Chem. Soc. 2013, 135, 12608–12611.
Benz, F.; Strunk, H. P. Rare earth luminescence: A way to overcome concentration quenching. AIP Adv. 2012, 2, 042115.
Li, X. M.; Wang, R.; Zhang, F.; Zhao, D. Y. Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett. 2014, 14, 3634–3639.
Wang, F.; Wang, J.; Liu, X. G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem., Int. Ed. 2010, 49, 7456–7460.
Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282.
Zhang, F.; Che, R. C.; Li, X. M.; Yao, C.; Yang, J. P.; Shen, D. K.; Hu, P.; Li, W.; Zhao, D. Y. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: Shell thickness dependence in upconverting optical properties. Nano Lett. 2012, 12, 2852–2858.
Zhong, Y. T.; Tian, G.; Gu, Z. J.; Yang, Y. J.; Gu, L.; Zhao, Y. L.; Ma, Y.; Yao, J. N. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles. Adv. Mater. 2014, 26, 2831–2837.
Liu, X. M.; Kong, X. G.; Zhang, Y. L.; Tu, L. P.; Wang, Y.; Zeng, Q. H.; Li, C. G.; Shi, Z.; Zhang, H. Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications. Chem. Commun. 2011, 47, 11957–11959.
Zhang, Y. X.; Wen, R. R.; Hu, J. L.; Guan, D. M.; Qiu, X. C.; Zhang, Y. X.; Kohane, D. S.; Liu, Q. Enhancement of single upconversion nanoparticle imaging by topologically segregated core–shell structure with inward energy migration. Nat. Commun. 2022, 13, 5927.
Yan, L.; Huang, J. S.; An, Z. C.; Zhang, Q. Y.; Zhou, B. Activating ultrahigh thermoresponsive upconversion in an erbium sublattice for nanothermometry and information security. Nano Lett. 2022, 22, 7042–7048.
Su, Q. Q.; Han, S. Y.; Xie, X. J.; Zhu, H. M.; Chen, H. Y.; Chen, C. K.; Liu, R. S.; Chen, X. Y.; Wang, F.; Liu, X. G. The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc. 2012, 134, 20849–20857.
Zhou, B.; Tang, B.; Zhang, C.; Qin, C. Y.; Gu, Z. J.; Ma, Y.; Zhai, T. Y.; Yao, J. N. Enhancing multiphoton upconversion through interfacial energy transfer in multilayered nanoparticles. Nat. Commun. 2020, 11, 1174.
Zhou, B.; Yan, L.; Tao, L. L.; Song, N.; Wu, M.; Wang, T.; Zhang, Q. Y. Controlling upconversion: Enabling photon upconversion and precise control of donor–acceptor interaction through interfacial energy transfer (Adv. Sci. 3/2018). Adv. Sci. 2018, 5, 1870016
Liang, L. L.; Qin, X.; Zheng, K. Z.; Liu, X. G. Energy flux manipulation in upconversion nanosystems. Acc. Chem. Res. 2019, 52, 228–236.
Li, Q. Q.; Xie, X. Y.; Wu, H.; Chen, H. R.; Wang, W.; Kong, X. G.; Chang, Y. L. Superenhancement photon upconversion nanoparticles for photoactivated nanocryometer. Nano Lett. 2023, 23, 3444–3450.
Tu, L. P.; Wu, K. F.; Luo, Y. S.; Wang, E. H.; Yuan, J.; Zuo, J.; Zhou, D.; Li, B.; Zhou, J. J.; Jin, D. Y. et al. Significant enhancement of the upconversion emission in highly Er3+-doped nanoparticles at cryogenic temperatures. Angew. Chem., Int. Ed. 2023, 62, e202217100.
Rabouw, F. T.; Prins, P. T.; Villanueva-Delgado, P.; Castelijns, M.; Geitenbeek, R. G.; Meijerink, A. Quenching pathways in NaYF4:Er3+,Yb3+ upconversion nanocrystals. ACS Nano 2018, 12, 4812–4823.
Teitelboim, A.; Tian, B. N.; Garfield, D. J.; Fernandez-Bravo, A.; Gotlin, A. C.; Schuck, P. J.; Cohen, B. E.; Chan, E. M. Energy transfer networks within upconverting nanoparticles are complex systems with collective, robust, and history-dependent dynamics. J. Phys. Chem. C 2019, 123, 2678–2689.
Zhang, J. H.; Hao, Z. D.; Li, J.; Zhang, X.; Luo, Y. S.; Pan, G. H. Observation of efficient population of the red-emitting state from the green state by non-multiphonon relaxation in the Er3+–Yb3+ system. Light Sci. Appl. 2015, 4, e239.
Bhuckory, S.; Lahtinen, S.; Höysniemi, N.; Guo, J. J.; Qiu, X.; Soukka, T.; Hildebrandt, N. Understanding FRET in upconversion nanoparticle nucleic acid biosensors. Nano Lett. 2023, 23, 2253–2261.
Stouwdam, J. W.; van Veggel, F. C. J. M. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2002, 2, 733–737.
Siefe, C.; Mehlenbacher, R. D.; Peng, C. S.; Zhang, Y. X.; Fischer, S.; Lay, A.; McLellan, C. A.; Alivisatos, A. P.; Chu, S.; Dionne, J. A. Sub-20 nm core–shell–shell nanoparticles for bright upconversion and enhanced Förster resonant energy transfer. J. Am. Chem. Soc. 2019, 141, 16997–17005.
Capobianco, J. A.; Vetrone, F.; Boyer, J. C.; Speghini, A.; Bettinelli, M. Enhancement of red emission (4F9/2 → 4I15/2) via upconversion in bulk and nanocrystalline cubic Y2O3:Er3+. J. Phys. Chem. B 2002, 106, 1181–1187.