AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Heterointerface engineering of assembled CoP2 on N-modified carbon as efficient trifunctional electrocatalysts for Zn-Air batteries and overall water splitting

Yan Chen1Zhenrui Yang1Juan Wang1Yun Yang1Xuedong He1Yang Wang1( )Jiadong Chen1,2( )Yaqing Guo1Xin Wang3Shun Wang1Huile Jin1,2( )
Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou 325035, China
School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
Show Author Information

Graphical Abstract

The synthesized cobalt phosphide on a two-dimensional (2D) carbon carrier has been effectively employed in multifunctional catalysis, delivering satisfactory performance in zinc-air batteries and water splitting along with an impressive stability exceeding 100 h.

Abstract

Enhancing catalytic activity through modulating the interaction between N-doped carbon and metal phosphides clusters is an effective approach. Herein, the electronic structure modulation of CoP2 supported N-modified carbon (CoP2/NC) has been designed and prepared as efficient electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Notably, CoP2/NC-1 catalyst exhibits impressive performance in alkaline media, with an ORR half-wave potential of 0.84 V, as well as OER and HER overpotentials of 290 and 129 mV (at 10 mA·cm−2), respectively. In addition, CoP2/NC-1 produces a power density as high as 172.9 mW·cm−2, and excellent reversibility of 100 h at 20 mA·cm−2 in home-made Zn-air batteries. The experimental results demonstrate that the synergistic interactions between N modified carbon substrate and CoP2 material significantly enhance the kinetics of ORR, OER, and HER. Density functional theory (DFT) calculations reveal the strong electrons redistribution of CoP2 induced by high-density N atoms at the interface, thus optimizing the key intermediates and significantly lower the energy barrier of reactions. These electronic adjustments of CoP2 greatly enhance its kinetics of ORR/OER/HER, leading to faster reactions. This study provides profound insights into the specific modification of CoP2 by N-doped carbon, enabling the construction of efficient catalysts.

Electronic Supplementary Material

Download File(s)
12274_2023_6321_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

[2]

Qu, S. X.; Liu, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Dynamic stretching-electroplating metal-coated textile for a flexible and stretchable zinc-air battery. Carbon Energy 2022, 4, 867–877.

[3]

Ding, J. Y.; Yang, H.; Zhang, S. S.; Liu, Q.; Cao, H. Q.; Luo, J.; Liu, X. J. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 2022, 18, 2204524.

[4]

Liu, J. J.; Zheng, M. T.; Li, J. T.; Yuan, Y. F.; Li, C. H.; Zhang, S. Q.; Yang, L.; Bai, Z. Y.; Lu, J. Lithiation-induced defect engineering to promote oxygen evolution reaction. Adv. Funct. Mater. 2023, 33, 2209753.

[5]

Zhang, J. T.; Liu, X. Z.; Ji, Y. J.; Liu, X. R.; Su, D.; Zhuang, Z. B.; Chang, Y. C.; Pao, C. W.; Shao, Q.; Hu, Z. W. et al. Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis. Nat. Commun. 2023, 14, 1761.

[6]

Lin, X. T.; Sun, Q.; Kim, J. T.; Li, X. F.; Zhang, J. J.; Sun, X. L. Superoxide-based Na-O2 batteries: Background, current status and future prospects. Nano Energy 2023, 112, 108466.

[7]

Wang, J. M.; Liu, X. J.; Li, L. H.; Liu, R.; Liu, Y. R.; Wang, C. L.; Lv, Z. H.; Yang, W. X.; Feng, X.; Wang, B. Heterogeneous assembling 3D free-standing Co@carbon membrane enabling efficient fluid and flexible zinc-air batteries. Nano Res. 2023, 16, 9327–9334.

[8]

Li, M.; Wu, Z. Z.; Zheng, M. T.; Chen, H.; Gould, T.; Zhang, S. Q. First-principles exploration of 2D benzenehexathiolate coordination nanosheets for broadband electrochromic devices. Adv. Funct. Mater. 2022, 32, 2202763.

[9]

Zhao, L.; Zhu, J. B.; Zheng, Y.; Xiao, M. L.; Gao, R.; Zhang, Z.; Wen, G. B.; Dou, H. Z.; Deng, Y. P.; Yu, A. P. et al. Materials engineering toward durable electrocatalysts for proton exchange membrane fuel cells. Adv. Energy Mater. 2022, 12, 2102665.

[10]

Xu, B. Y.; Liu, T. Y.; Liang, X. C.; Dou, W. J.; Geng, H. B.; Yu, Z. Y.; Li, Y. F.; Zhang, Y.; Shao, Q.; Fan, J. M. et al. Pd-Sb rhombohedra with an unconventional rhombohedral phase as a trifunctional electrocatalyst. Adv. Mater. 2022, 34, 2206528.

[11]

He, X. D.; Han, X.; Zhou, X. Y.; Chen, J. D.; Wang, J.; Chen, Y.; Yu, L. H.; Zhang, N.; Li, J.; Wang, S. et al. Electronic modulation with Pt-incorporated NiFe layered double hydroxide for ultrastable overall water splitting at 1000 mA·cm−2. Appl. Catal. B: Environ. 2023, 331, 122683.

[12]

Jin, M. Y.; Teng, M. Y.; Wang, S.; Yang, K. Q.; Wang, J.; Jin, H. L. Interface engineering of crystalline/amorphous Pt/TeO x nanocapsules for efficient alkaline hydrogen evolution. Int. J. Hydrogen Energy 2023, 48, 16593–16600.

[13]

Zheng, H. Z.; Ma, F.; Yang, H. C.; Wu, X. G.; Wang, R.; Jia, D. L.; Wang, Z. X.; Lu, N. D.; Ran, F.; Peng, S. L. Mn, N Co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries. Nano Res. 2022, 15, 1942–1948.

[14]

Yan, D. F.; Xia, C. F.; Zhang, W. J.; Hu, Q.; He, C. X.; Xia, B. Y.; Wang, S. Y. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2202317.

[15]

Jiang, X.; Xie, Q. F.; Lu, G. X.; Wang, Y.; Liu, T. F.; Liu, Y. J.; Tao, X. Y.; Nai, J. W. Synthesis of NiSe2/Fe3O4 nanotubes with heteroepitaxy configuration as a high-efficient oxygen evolution electrocatalyst. Small Methods 2022, 6, 2200377.

[16]

Zhou, Y. N.; Hu, W. H.; Zhen, Y. N.; Dong, B.; Dong, Y. W.; Fan, R. Y.; Liu, B.; Liu, D. P.; Chai, Y. M. Metallic MoO x layer promoting high-valence Mo doping into CoP nanowires with ultrahigh activity for hydrogen evolution at 2000 mA·cm−2. Appl. Catal. B: Environ. 2022, 309, 121230.

[17]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated n-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

[18]

Liu, D.; Xu, G. Y.; Yang, H.; Wang, H. T.; Xia, B. Y. Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2208358.

[19]

Song, H. Q.; Yu, J. K.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting. Adv. Energy Mater. 2022, 12, 2102573.

[20]

Liu, H.; Liu, Z. H.; Wang, Y.; Zhang, J. Q.; Yang, Z. X.; Hu, H.; Zhao, Q. S.; Ning, H.; Zhi, L. J.; Wu, M. B. Carbon dots-oriented synthesis of fungus-like CoP microspheres as a bifunctional electrocatalyst for efficient overall water splitting. Carbon 2021, 182, 327–334.

[21]

Wu, J. C.; Wang, Z. F.; Guan, T. T.; Zhang, G. L.; Zhang, J.; Han, J.; Guan, S. Q.; Wang, N.; Wang, J. L.; Li, K. X. Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting. Carbon Energy 2023, 5, e268.

[22]

Zheng, B. Z.; Fan, J. Y.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R. R.; Liu, X. G. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603.

[23]

Jin, J. C.; Peng, Y. H.; Xu, Y. T.; Han, K.; Zhang, A. R.; Yang, X. B.; Xia, Z. G. Bright green emission from self-trapped excitons triggered by Sb3+ doping in Rb4CdCl6. Chem. Mater. 2022, 34, 5717–5725.

[24]

Kong, F. T.; Cui, X. Z.; Huang, Y. F.; Yao, H. L.; Chen, Y. F.; Tian, H.; Meng, G.; Chen, C.; Chang, Z. W.; Shi, J. L. N-doped carbon electrocatalyst: Marked ORR activity in acidic media without the contribution from metal sites. Angew. Chem., Int. Ed. 2022, 61, e202116290.

[25]

Zaman, S.; Douka, A. I.; Noureen, L.; Tian, X. L.; Ajmal, Z.; Wang, H. J. Oxygen reduction performance measurements: Discrepancies against benchmarks. Battery Energy 2023, 2, 20220060.

[26]

Niu, S. W.; Fang, Y. Y.; Rao, D. W.; Liang, G. J.; Li, S. Y.; Cai, J. Y.; Liu, B.; Li, J. M.; Wang, G. M. Reversing the nucleophilicity of active sites in CoP2 enables exceptional hydrogen evolution catalysis. Small 2022, 18, 2106870.

[27]

Li, H.; Wen, P.; Itanze, D. S.; Kim, M. W.; Adhikari, S.; Lu, C.; Jiang, L.; Qiu, Y. J.; Geyer, S. M. Retracted: Phosphorus-rich colloidal cobalt diphosphide (CoP2) nanocrystals for electrochemical and photoelectrochemical hydrogen evolution. Adv. Mater. 2019, 31, 1900813.

[28]

He, X. D.; Zhang, Y. J.; Wang, J.; Li, J.; Yu, L. H.; Zhou, F.; Li, J.; Shen, X. J.; Wang, X.; Wang, S. et al. Biomass-derived Fe2N@NCNTs from bioaccumulation as an efficient electrocatalyst for oxygen reduction and Zn-air battery. ACS Sustain. Chem. Eng. 2022, 10, 9105–9112.

[29]

Németh, P.; Lancaster, H. J.; Salzmann, C. G.; McColl, K.; Fogarassy, Z.; Garvie, L. A. J.; Illés, L.; Pecz, B.; Murri, M.; Corà, F. et al. Shock-formed carbon materials with intergrown sp3- and sp2-bonded nanostructured units. Proc. Natl. Acad. Sci. USA 2022, 119, e2203672119.

[30]

Moura, T. A.; Neves, W. Q.; Alencar, R. S.; Kim, Y. A.; Endo, M.; Vasconcelos, T. L.; Costa, D. G.; Candiotto, G.; Capaz, R. B.; Araujo, P. T. et al. Resonance Raman spectroscopy characterization of linear carbon chains encapsulated by multi-walled carbon nanotubes. Carbon 2023, 212, 118123.

[31]

Li, X. W.; Yang, S.; Liu, M. H.; Liu, S. J.; Miao, Q. Y.; Duan, Z. L.; Qiao, P. Z.; Lin, J. Y.; Sun, F. F.; Xu, Q. et al. Immobilization of platinum nanoparticles on covalent organic framework-derived carbon for oxygen reduction catalysis. Small Struct. 2023, 4, 2200320.

[32]

Arrigo, R.; Schuster, M. E.; Xie, Z. L.; Yi, Y.; Wowsnick, G.; Sun, L. L.; Hermann, K. E.; Friedrich, M.; Kast, P.; Hävecker, M. et al. Nature of the N–Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal. 2015, 5, 2740–2753.

[33]

Quílez-Bermejo, J.; García-Dalí, S.; Daouli, A.; Zitolo, A.; Canevesi, R. L. S.; Emo, M.; Izquierdo, M. T.; Badawi, M.; Celzard, A.; Fierro, V. Advanced design of metal nanoclusters and single atoms embedded in C1N1-derived carbon materials for ORR, HER, and OER. Adv. Funct. Mater. 2023, 33, 2300405.

[34]

Vijayakumar, E.; Ramakrishnan, S.; Sathiskumar, C.; Yoo, D. J.; Balamurugan, J.; Noh, H. S.; Kwon, D.; Kim, Y. H.; Lee, H. MOF-derived CoP-nitrogen-doped Carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically active sites for OER, HER, ORR and rechargeable zinc-air batteries. Chem. Eng. J. 2022, 428, 131115.

Nano Research
Pages 3801-3809
Cite this article:
Chen Y, Yang Z, Wang J, et al. Heterointerface engineering of assembled CoP2 on N-modified carbon as efficient trifunctional electrocatalysts for Zn-Air batteries and overall water splitting. Nano Research, 2024, 17(5): 3801-3809. https://doi.org/10.1007/s12274-023-6321-7
Topics:

586

Views

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 08 October 2023
Revised: 04 November 2023
Accepted: 05 November 2023
Published: 29 December 2023
© Tsinghua University Press 2023
Return