AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Interlayer exciton dynamics of transition metal dichalcogenide heterostructures under electric fields

Jian Tang1Yue Zheng1Ke Jiang1Qi You1Zhentian Yin1Zihao Xie1Henan Li2Cheng Han1( )Xiaoxian Zhang3( )Yumeng Shi2( )
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
Show Author Information

Graphical Abstract

We summarize the recent advances on the understanding of interlayer exciton dynamics under electric fields in transition metal dichalcogenide (TMDC) heterostructures. We put emphasis on the electrical modulation of interlayer excitons’ emission, the charge transport inside the heterostructure after the separation of interlayer excitons by an electric field, and the correlation physics of interlayer excitons and charges under electrical doping and tuning.

Abstract

Stacking single layers of atoms on top of each other provides a fundamental way to achieve novel material systems and engineer their physical properties, which offers opportunities for exploring fundamental physics and realizing next-generation optoelectronic devices. Among the two-dimensional (2D)-stacked systems, transition metal dichalcogenide (TMDC) heterostructures are particularly attractive because they host tightly-bonded interlayer excitons which possess various novel and appealing properties. These interlayer excitons have drawn significant research attention and hold high potential for the application in unique optoelectronic devices, such as polarization- and wavelength-tunable single photon emitters, valley Hall transistors, and possible high-temperature superconductors. The development of these devices requires a comprehensive understanding of the fundamental properties of these interlayer excitons and the impact of electric fields on their behaviors. In this review, we summarize the recent advances on the understanding of interlayer exciton dynamics under electric fields in TMDC heterostructures. We put emphasis on the electrical modulation of interlayer excitons’ emission, the valley Hall transport of charge carriers after the separation of interlayer excitons by an electric field, and the correlation physics of interlayer excitons and charges under electrical doping and tuning. Challenges and perspectives are finally discussed for the application of TMDC heterostructures in future optoelectronics.

References

[1]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[2]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[3]

Park, J. M.; Cao, Y.; Xia, L. Q.; Sun, S. W.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 2022, 21, 877–883.

[4]

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

[5]

Li, M. Y.; Chen, C. H.; Shi, Y. M.; Li, L. J. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 2016, 19, 322–335.

[6]

Wu, Y. C.; Li, D. F.; Wu, C. L.; Hwang, H. Y.; Cui, Y. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 2023, 8, 41–53.

[7]

Sierra, J. F.; Fabian, J.; Kawakami, R. K.; Roche, S.; Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 2021, 16, 856–868.

[8]

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

[9]

Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

[10]

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

[11]

He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803.

[12]

Charbonneau, S.; Thewalt, M. L. W.; Koteles, E. S.; Elman, B. Transformation of spatially direct to spatially indirect excitons in coupled double quantum wells. Phys. Rev. B 1988, 38, 6287–6290.

[13]

Butov, L. V. Condensation and pattern formation in cold exciton gases in coupled quantum wells. J. Phys.: Condens. Matter 2004, 16, R1577–R1613.

[14]

Butov, L. V. Cold exciton gases in coupled quantum well structures. J. Phys.: Condens. Matter 2007, 19, 295202.

[15]

Butov, L. V.; Gossard, A. C.; Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 2002, 418, 751–754.

[16]

High, A. A.; Leonard, J. R.; Hammack, A. T.; Fogler, M. M.; Butov, L. V.; Kavokin, A. V.; Campman, K. L.; Gossard, A. C. Spontaneous coherence in a cold exciton gas. Nature 2012, 483, 584–588.

[17]

Smolka, S.; Wuester, W.; Haupt, F.; Faelt, S.; Wegscheider, W.; Imamoglu, A. Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas. Science 2014, 346, 332–335.

[18]

Wu, Z.; Zhang, L.; Sun, W.; Xu, X. T.; Wang, B. Z.; Ji, S. C.; Deng, Y. J.; Chen, S.; Liu, X. J.; Pan, J. W. Realization of two-dimensional spin-orbit coupling for Bose–Einstein condensates. Science 2016, 354, 83–88.

[19]

Liu, X. M.; Watanabe, K.; Taniguchi, T.; Halperin, B. I.; Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 2017, 13, 746–750.

[20]

Lagoin, C.; Dubin, F. Key role of the moiré potential for the quasicondensation of interlayer excitons in van der Waals heterostructures. Phys. Rev. B 2021, 103, L041406.

[21]

Yankowitz, M.; Xue, J. M.; Cormode, D.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Jacquod, P.; LeRoy, B. J. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 2012, 8, 382–386.

[22]

Ponomarenko, L. A.; Gorbachev, R. V.; Yu, G. L.; Elias, D. C.; Jalil, R.; Patel, A. A.; Mishchenko, A.; Mayorov, A. S.; Woods, C. R.; Wallbank, J. R. et al. Cloning of Dirac fermions in graphene superlattices. Nature 2013, 497, 594–597.

[23]

Yu, H. Y.; Liu, G. B.; Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 2018, 5, 035021.

[24]

Zhang, Z. M.; Wang, Y. M.; Watanabe, K.; Taniguchi, T.; Ueno, K.; Tutuc, E.; LeRoy, B. J. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. 2020, 16, 1093–1096.

[25]

Alexeev, E. M.; Ruiz-Tijerina, D. A.; Danovich, M.; Hamer, M. J.; Terry, D. J.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 2019, 567, 81–86.

[26]

Yang, L. L.; Yuan, Y.; Fu, B. W.; Yang, J. N.; Dai, D. J.; Shi, S. S.; Yan, S.; Zhu, R.; Han, X.; Li, H. C. et al. Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities. Nat. Commun. 2023, 14, 4265.

[27]

Zhu, K. C.; Pazos, S.; Aguirre, F.; Shen, Y. Q.; Yuan, Y.; Zheng, W. W.; Alharbi, O.; Villena, M. A.; Fang, B.; Li, X. Y. et al. Hybrid 2D-CMOS microchips for memristive applications. Nature 2023, 618, 57–62.

[28]

Joe, A. Y.; Jauregui, L. A.; Pistunova, K.; Mier Valdivia, A. M.; Lu, Z. G.; Wild, D. S.; Scuri, G.; De Greve, K.; Gelly, R. J.; Zhou, Y. et al. Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Phys. Rev. B 2021, 103, L161411.

[29]

Li, X. T.; Liu, Z. D.; Liu, Y. H.; Karki, S.; Li, X. Q.; Akinwande, D.; Incorvia, J. A. C. All-electrical control and temperature dependence of the spin and valley hall effect in monolayer WSe2 transistors. ACS Appl. Electron. Mater. 2022, 4, 3930–3937.

[30]

Jiang, C. Y.; Rasmita, A.; Ma, H.; Tan, Q. H.; Zhang, Z. W.; Huang, Z. M.; Lai, S.; Wang, N. Z.; Liu, S.; Liu, X. et al. A room-temperature gate-tunable bipolar valley Hall effect in molybdenum disulfide/tungsten diselenide heterostructures. Nat. Electron. 2022, 5, 23–27.

[31]

Tan, Q. H.; Rasmita, A.; Zhang, Z. W.; Cai, H. B.; Cai, X. B.; Dai, X. R.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Gao, W. B. Layer-dependent correlated phases in WSe2/MoS2 moiré superlattice. Nat. Mater. 2023, 22, 605–611.

[32]

Dong, R.; Kuljanishvili, I. Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems. J. Vac. Sci. Technol. B 2017, 35, 030803.

[33]

Guo, H. W.; Hu, Z.; Liu, Z. B.; Tian, J. G. Stacking of 2D materials. Adv. Funct. Mater. 2021, 31, 2007810.

[34]

Rani, S.; Sharma, M.; Verma, D.; Ghanghass, A.; Bhatia, R.; Sameera, I. Two-dimensional transition metal dichalcogenides and their heterostructures: Role of process parameters in top-down and bottom-up synthesis approaches. Mater. Sci. Semicond. Process. 2022, 139, 106313.

[35]

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

[36]

Lin, Y. C.; Ghosh, R. K.; Addou, R.; Lu, N.; Eichfeld, S. M.; Zhu, H.; Li, M. Y.; Peng, X.; Kim, M. J.; Li, L. J. et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 2015, 6, 7311.

[37]

Zhang, Z. W.; Huang, Z. W.; Li, J.; Wang, D.; Lin, Y.; Yang, X. D.; Liu, H.; Liu, S.; Wang, Y. L.; Li, B. et al. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol. 2022, 17, 493–499.

[38]

Jin, G.; Lee, C. S.; Okello, O. F. N.; Lee, S. H.; Park, M. Y.; Cha, S.; Seo, S. Y.; Moon, G.; Min, S. Y.; Yang, D. H. et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 2021, 16, 1092–1098.

[39]

Kang, J.; Tongay, S.; Zhou, J.; Li, J. B.; Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.

[40]

Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.

[41]

Wilson, N. R.; Nguyen, P. V.; Seyler, K.; Rivera, P.; Marsden, A. J.; Laker, Z. P. L.; Constantinescu, G. C.; Kandyba, V.; Barinov, A.; Hine, N. D. M. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 2017, 3, e1601832.

[42]

Chiu, M. H.; Zhang, C. D.; Shiu, H. W.; Chuu, C. P.; Chen, C. H.; Chang, C. Y. S.; Chen, C. H.; Chou, M. Y.; Shih, C. K.; Li, L. J. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 2015, 6, 7666.

[43]

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

[44]

Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590–5597.

[45]

Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

[46]

Zhu, H. M.; Wang, J.; Gong, Z. Z.; Kim, Y. D.; Hone, J.; Zhu, X. Y. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der waals heterojunctions. Nano Lett. 2017, 17, 3591–3598.

[47]

Chen, H. L.; Wen, X. W.; Zhang, J.; Wu, T. M.; Gong, Y. J.; Zhang, X.; Yuan, J. T.; Yi, C. Y.; Lou, J.; Ajayan, P. M. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.

[48]

Miller, B.; Steinhoff, A.; Pano, B.; Klein, J.; Jahnke, F.; Holleitner, A.; Wurstbauer, U. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 2017, 17, 5229–5237.

[49]

Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Probing charge transfer excitons in a MoSe2–WS2 van der Waals heterostructure. Nanoscale 2015, 7, 17523–17528.

[50]

Hill, H. M.; Rigosi, A. F.; Rim, K. T.; Flynn, G. W.; Heinz, T. F. Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 2016, 16, 4831–4837.

[51]

Chaves, A.; Azadani, J. G.; Özçelik, V. O.; Grassi, R.; Low, T. Electrical control of excitons in van der Waals heterostructures with type-II band alignment. Phys. Rev. B 2018, 98, 121302.

[52]

Zhu, M. Q.; Zhang, Z. N.; Zhang, T.; Liu, D. D.; Zhang, H.; Zhang, Z. X.; Li, Z. L.; Cheng, Y. C.; Huang, W. Exchange between interlayer and intralayer exciton in WSe2/WS2 heterostructure by interlayer coupling engineering. Nano Lett. 2022, 22, 4528–4534.

[53]

Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.

[54]

Kormányos, A.; Burkard, G.; Gmitra, M.; Fabian, J.; Zólyomi, V.; Drummond, N. D.; Fal’ko, V. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2015, 2, 022001

[55]

Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.

[56]

Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

[57]

Liu, H. J.; Jiao, L.; Xie, L.; Yang, F.; Chen, J. L.; Ho, W. K.; Gao, C. L.; Jia, J. F.; Cui, X. D.; Xie, M. H. Molecular-beam epitaxy of monolayer and bilayer WSe2: A scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Mater. 2015, 2, 034004.

[58]

Mann, J.; Ma, Q.; Odenthal, P. M.; Isarraraz, M.; Le, D.; Preciado, E.; Barroso, D.; Yamaguchi, K.; von Son Palacio, G.; Nguyen, A. et al. 2-Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1− x )Se2 x monolayers. Adv. Mater 2014, 26, 1399–1404

[59]

Zeng, H. L.; Cui, X. D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2629–2642.

[60]

Cheiwchanchamnangij, T.; Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 2012, 85, 205302.

[61]

Yu, H. Y.; Cui, X. D.; Xu, X. D.; Yao, W. Valley excitons in two-dimensional semiconductors. Natl. Sci. Rev. 2015, 2, 57–70.

[62]

Kenkre, V. M. Theory of exciton annihilation in molecular crystals. Phys. Rev. B 1980, 22, 2089–2098.

[63]

Qiu, D. Y.; da Jornada, F. H.; Louie, S. G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 2013, 111, 216805.

[64]

Ye, Z. L.; Cao, T.; O’Brien, K.; Zhu, H.Y.; Yin, X. B.; Wang, Y.; Louie, S. G.; Zhang, X. Probing excitonic dark states in single-layer tungsten disulphide. Nature 2014, 513, 214–218.

[65]

Paik, E. Y.; Zhang, L.; Burg, G. W.; Gogna, R.; Tutuc, E.; Deng, H. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 2019, 576, 80–84.

[66]

Regan, E. C.; Wang, D. Q.; Paik, E. Y.; Zeng, Y. X.; Zhang, L.; Zhu, J. H.; MacDonald, A. H.; Deng, H.; Wang, F. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 2022, 7, 778–795.

[67]

Mueller, T.; Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2018, 2, 29.

[68]

Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

[69]

Mak, K. F.; Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 2022, 17, 686–695.

[70]

Rivera, P.; Seyler, K. L.; Yu, H. Y.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016, 351, 688–691.

[71]

Jiang, C. Y.; Xu, W. G.; Rasmita, A.; Huang, Z. M.; Li, K.; Xiong, Q. H.; Gao, W. B. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat. Commun. 2018, 9, 753.

[72]

Palummo, M.; Bernardi, M.; Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 2015, 15, 2794–2800.

[73]

Baranowski, M.; Surrente, A.; Klopotowski, L.; Urban, J. M.; Zhang, N.; Maude, D. K.; Wiwatowski, K.; Mackowski, S.; Kung, Y. C.; Dumcenco, D. et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett. 2017, 17, 6360–6365.

[74]

Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198–6202.

[75]

Latini, S.; Winther, K. T.; Olsen, T.; Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 2017, 17, 938–945.

[76]

Torun, E.; Miranda, H. P. C.; Molina-Sánchez, A.; Wirtz, L. Interlayer and intralayer excitons in MoS2/WS2 and MoSe2/WSe2 heterobilayers. Phys. Rev. B 2018, 97, 245427.

[77]

Andrei, E. Y.; Efetov, D. K.; Jarillo-Herrero, P.; MacDonald, A. H.; Mak, K. F.; Senthil, T.; Tutuc, E.; Yazdani, A.; Young, A. F. The marvels of moiré materials. Nat. Rev. Mater. 2021, 6, 201–206.

[78]

Ribeiro-Palau, R.; Zhang, C. J.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. R. Twistable electronics with dynamically rotatable heterostructures. Science 2018, 361, 690–693.

[79]

Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.

[80]

Jin, C. H.; Regan, E. C.; Yan, A. M.; Iqbal Bakti Utama, M.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

[81]

Kumar, A.; Yagodkin, D.; Stetzuhn, N.; Kovalchuk, S.; Melnikov, A.; Elliott, P.; Sharma, S.; Gahl, C.; Bolotin, K. I. Spin/valley coupled dynamics of electrons and holes at the MoS2–MoSe2 interface. Nano Lett. 2021, 21, 7123–7130.

[82]

Heo, H.; Sung, J. H.; Jin, G.; Ahn, J. H.; Kim, K.; Lee, M. J.; Cha, S.; Choi, H.; Jo, M. H. Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv. Mater. 2015, 27, 3803–3810.

[83]

Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Ultraflat graphene. Nature 2009, 462, 339–341.

[84]

Rosenberger, M. R.; Chuang, H. J.; Phillips, M.; Oleshko, V. P.; McCreary, K. M.; Sivaram, S. V.; Hellberg, C. S.; Jonker, B. T. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 2020, 14, 4550–4558.

[85]

Weston, A.; Zou, Y. C.; Enaldiev, V.; Summerfield, A.; Clark, N.; Zólyomi, V.; Graham, A.; Yelgel, C.; Magorrian, S.; Zhou, M. W. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2020, 15, 592–597.

[86]

Li, E.; Hu, J. X.; Feng, X. M.; Zhou, Z. S.; An, L. H.; Law, K. T.; Wang, N.; Lin, N. Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe2. Nat. Commun. 2021, 12, 5601.

[87]

Andersen, T. I.; Scuri, G.; Sushko, A.; De Greve, K.; Sung, J.; Zhou, Y.; Wild, D. S.; Gelly, R. J.; Heo, H.; Bérubé, D. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 2021, 20, 480–487.

[88]

Li, H. Y.; Li, S. W.; Naik, M. H.; Xie, J. X.; Li, X. Y.; Wang, J. Y.; Regan, E.; Wang, D. Q.; Zhao, W. Y.; Zhao, S. H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 2021, 20, 945–950.

[89]

Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

[90]

Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

[91]

Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

[92]

Mahdikhanysarvejahany, F.; Shanks, D. N.; Muccianti, C.; Badada, B. H.; Idi, I.; Alfrey, A.; Raglow, S.; Koehler, M. R.; Mandrus, D. G.; Taniguchi, T. et al. Temperature dependent moiré trapping of interlayer excitons in MoSe2–WSe2 heterostructures. npj 2D Mater. Appl. 2021, 5, 67.

[93]

Baek, H.; Brotons-Gisbert, M.; Koong, Z. X.; Campbell, A.; Rambach, M.; Watanabe, K.; Taniguchi, T.; Gerardot, B. D. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 2020, 6, eaba8526.

[94]

Nayak, P. K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J. U.; Ma, K. Y.; Jang, A. R.; Lim, H.; Kim, D.; Ryu, S. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 2017, 11, 4041–4050.

[95]

Regan, E. C.; Wang, D. Q.; Jin, C. H.; Bakti Utama, M. I.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 2020, 579, 359–363.

[96]

Cho, C.; Wong, J.; Taqieddin, A.; Biswas, S.; Aluru, N. R.; Nam, S.; Atwater, H. A. Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers. Nano Lett. 2021, 21, 3956–3964.

[97]

Tang, Y. H.; Gu, J.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Mak, K. F.; Shan, J. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 2021, 16, 52–57.

[98]

Jauregui, L. A.; Joe, A. Y.; Pistunova, K.; Wild, D. S.; High, A. A.; Zhou, Y.; Scuri, G.; De Greve, K.; Sushko, A.; Yu, C. H. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 2019, 366, 870–875.

[99]

Ciarrocchi, A.; Unuchek, D.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 2019, 13, 131–136.

[100]

Ruiz-Tijerina, D. A.; Fal'ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 2019, 99, 125424.

[101]

Zhang, L.; Zhang, Z.; Wu, F. C.; Wang, D. Q.; Gogna, R.; Hou, S. C.; Watanabe, K.; Taniguchi, T.; Kulkarni, K.; Kuo, T. et al. Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun. 2020, 11, 5888.

[102]

Hsu, W. T.; Lin, B. H.; Lu, L. S.; Lee, M. H.; Chu, M. W.; Li, L. J.; Yao, W.; Chang, W. H.; Shih, C. K. Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin. Sci. Adv. 2019, 5, eaax7407.

[103]

Yang, M.; Ren, L.; Robert, C.; Van Tuan, D.; Lombez, L.; Urbaszek, B.; Marie, X.; Dery, H. Relaxation and darkening of excitonic complexes in electrostatically doped monolayer WSe2: Roles of exciton-electron and trion-electron interactions. Phys. Rev. B 2022, 105, 085302.

[104]

Wang, X.; Zhu, J. Y.; Seyler, K. L.; Rivera, P.; Zheng, H. Y.; Wang, Y. Q.; He, M. H.; Taniguchi, T.; Watanabe, K.; Yan, J. Q. et al. Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol. 2021, 16, 1208–1213.

[105]

Liu, E. F.; Barré, E.; van Baren, J.; Wilson, M.; Taniguchi, T.; Watanabe, K.; Cui, Y. T.; Gabor, N. M.; Heinz, T. F.; Chang, Y. C. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 2021, 594, 46–50.

[106]

Brotons-Gisbert, M.; Baek, H.; Campbell, A.; Watanabe, K.; Taniguchi, T.; Gerardot, B. D. Moiré-trapped interlayer trions in a charge-tunable WSe2/MoSe2 heterobilayer. Phys. Rev. X 2021, 11, 031033.

[107]

Bondarev, I. V.; Vladimirova, M. R. Complexes of dipolar excitons in layered quasi-two-dimensional nanostructures. Phys. Rev. B 2018, 97, 165419.

[108]

Calman, E. V.; Fowler-Gerace, L. H.; Choksy, D. J.; Butov, L. V.; Nikonov, D. E.; Young, I. A.; Hu, S.; Mishchenko, A.; Geim, A. K. Indirect excitons and trions in MoSe2/WSe2 van der Waals heterostructures. Nano Lett. 2020, 20, 1869–1875.

[109]

Wang, T. M.; Miao, S. N.; Li, Z. P.; Meng, Y. Z.; Lu, Z. G.; Lian, Z.; Blei, M.; Taniguchi, T.; Watanabe, K.; Tongay, S. et al. Giant Valley-zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Lett. 2020, 20, 694–700.

[110]

Zhang, L.; Gogna, R.; Burg, G. W.; Horng, J.; Paik, E.; Chou, Y. H.; Kim, K.; Tutuc, E.; Deng, H. Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B 2019, 100, 041402.

[111]

Kormányos, A.; Zólyomi, V.; Drummond, N. D.; Burkard, G. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 2014, 4, 011034.

[112]

Hanbicki, A. T.; Chuang, H. J.; Rosenberger, M. R.; Hellberg, C. S.; Sivaram, S. V.; McCreary, K. M.; Mazin, I. I.; Jonker, B. T. Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure. ACS Nano 2018, 12, 4719–4726.

[113]

Liu, G. B.; Shan, W. Y.; Yao, Y. G.; Yao, W.; Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 2013, 88, 085433.

[114]

Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

[115]

Delhomme, A.; Vaclavkova, D.; Slobodeniuk, A.; Orlita, M.; Potemski, M.; Basko, D. M.; Watanabe, K.; Taniguchi, T.; Mauro, D.; Barreteau, C. et al. Flipping exciton angular momentum with chiral phonons in MoSe2/WSe2 heterobilayers. 2D Mater. 2020, 7, 041002.

[116]

Nagler, P.; Ballottin, M. V.; Mitioglu, A. A.; Mooshammer, F.; Paradiso, N.; Strunk, C.; Huber, R.; Chernikov, A.; Christianen, P. C. M.; Schüller, C. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 2017, 8, 1551.

[117]

MacNeill, D.; Heikes, C.; Mak, K. F.; Anderson, Z.; Kormányos, A.; Zólyomi, V.; Park, J.; Ralph, D. C. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 2015, 114, 037401.

[118]

Srivastava, A.; Sidler, M.; Allain, A. V.; Lembke, D. S.; Kis, A.; Imamoğlu, A. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 2015, 11, 141–147.

[119]

Aivazian, G.; Gong, Z. R.; Jones, A. M.; Chu, R. L.; Yan, J.; Mandrus, D. G.; Zhang, C. W.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 2015, 11, 148–152.

[120]

Hsu, W. T.; Lu, L. S.; Wu, P. H.; Lee, M. H.; Chen, P. J.; Wu, P. Y.; Chou, Y. C.; Jeng, H. T.; Li, L. J.; Chu, M. W. et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun. 2018, 9, 1356.

[121]

Liu, G. B.; Xiao, D.; Yao, Y. G.; Xu, X. D.; Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2643–2663.

[122]

Zhang, X. X.; You, Y. M.; Zhao, S. Y. F.; Heinz, T. F. Experimental evidence for dark excitons in monolayer WSe2. Phys. Rev. Lett. 2015, 115, 257403.

[123]

Park, K. D.; Jiang, T.; Clark, G.; Xu, X. D.; Raschke, M. B. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nat. Nanotechnol. 2018, 13, 59–64.

[124]

Wu, F. C.; Lovorn, T.; MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035306.

[125]

Du, L. J.; Hasan, T.; Castellanos-Gomez, A.; Liu, G. B.; Yao, Y. G.; Lau, C. N.; Sun, Z. P. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 2021, 3, 193–206.

[126]

Xiao, D.; Chang, M. C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959–2007.

[127]

Wu, S. F.; Ross, J. S.; Liu, G. B.; Aivazian, G.; Jones, A.; Fei, Z. Y.; Zhu, W. G.; Xiao, D.; Yao, W.; Cobden, D. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 2013, 9, 149–153.

[128]

Yamamoto, M.; Shimazaki, Y.; Borzenets, I. V.; Tarucha, S. Valley hall effect in two-dimensional hexagonal lattices. J. Phys. Soc. Jpn. 2015, 84, 121006.

[129]

Cysne, T. P.; Costa, M.; Canonico, L. M.; Nardelli, M. B.; Muniz, R. B.; Rappoport, T. G. Disentangling orbital and valley hall effects in bilayers of transition metal dichalcogenides. Phys. Rev. Lett. 2021, 126, 056601.

[130]

Rycerz, A.; Tworzydło, J.; Beenakker, C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 2007, 3, 172–175.

[131]

Xiao, D.; Yao, W.; Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 2007, 99, 236809.

[132]

Yao, W.; Xiao, D.; Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 2008, 77, 235406.

[133]

Shimazaki, Y.; Yamamoto, M.; Borzenets, I. V.; Watanabe, K.; Taniguchi, T.; Tarucha, S. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat. Phys. 2015, 11, 1032–1036.

[134]

Gunlycke, D.; White, C. T. Graphene valley filter using a line defect. Phys. Rev. Lett. 2011, 106, 136806.

[135]

Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489–1492.

[136]

Lee, J.; Mak, K. F.; Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 2016, 11, 421–425.

[137]

Wu, Z. F.; Zhou, B. T.; Cai, X. B.; Cheung, P.; Liu, G. B.; Huang, M. Z.; Lin, J. X. Z.; Han, T. Y.; An, L. H.; Wang, Y. W. et al. Intrinsic valley Hall transport in atomically thin MoS2. Nat. Commun. 2019, 10, 611.

[138]

Li, L. F.; Shao, L.; Liu, X. W.; Gao, A. Y.; Wang, H.; Zheng, B. J.; Hou, G. Z.; Shehzad, K.; Yu, L. W.; Miao, F. et al. Room-temperature valleytronic transistor. Nat. Nanotechnol. 2020, 15, 743–749.

[139]

Onga, M.; Zhang, Y. J.; Ideue, T.; Iwasa, Y. Exciton Hall effect in monolayer MoS2. Nat. Mater. 2017, 16, 1193–1197.

[140]

Ubrig, N.; Jo, S.; Philippi, M.; Costanzo, D.; Berger, H.; Kuzmenko, A. B.; Morpurgo, A. F. Microscopic origin of the valley hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Lett. 2017, 17, 5719–5725.

[141]

Ahn, Y.; Dunning, J.; Park, J. Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett. 2005, 5, 1367–1370.

[142]

Guimarães, M. H. D.; Gao, H.; Han, Y. M.; Kang, K.; Xie, S. E.; Kim, C. J.; Muller, D. A.; Ralph, D. C.; Park, J. Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 2016, 10, 6392–6399.

[143]

Yu, H. Y.; Liu, G. B.; Gong, P.; Xu, X. D.; Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun. 2014, 5, 3876.

[144]

Li, Y. M.; Li, J.; Shi, L. K.; Zhang, D.; Yang, W.; Chang, K. Light-induced exciton spin hall effect in van der Waals heterostructures. Phys. Rev. Lett. 2015, 115, 166804.

[145]

Lee, J.; Heo, W.; Cha, M.; Watanabe, K.; Taniguchi, T.; Kim, J.; Cha, S.; Kim, D.; Jo, M. H.; Choi, H. Ultrafast non-excitonic valley Hall effect in MoS2/WTe2 heterobilayers. Nat. Commun. 2021, 12, 1635.

[146]
Incorvia, J. A.; Barré, E.; Kim, S. H.; McClellan, C.; Pop, E.; Wong, H. S. P.; Heinz, T. Near-room temperature electrical control of spin and valley Hall effect in monolayer WSe2 transistors for spintronic applications. In 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S), Berkeley, USA, 2017, pp 1–2.
[147]

Barré, E.; Incorvia, J. A. C.; Kim, S. H.; McClellan, C. J.; Pop, E.; Wong, H. S. P.; Heinz, T. F. Spatial separation of carrier spin by the valley Hall effect in monolayer WSe2 transistors. Nano Lett. 2019, 19, 770–774.

[148]

Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Sun, Z.; Watanabe, K.; Taniguchi, T.; Kis, A. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 2019, 14, 1104–1109.

[149]

Kim, J.; Jin, C. H.; Chen, B.; Cai, H.; Zhao, T.; Lee, P.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 2017, 3, e1700518.

[150]

Jin, C. H.; Kim, J.; Utama, M. I. B.; Regan, E. C.; Kleemann, H.; Cai, H.; Shen, Y. X.; Shinner, M. J.; Sengupta, A.; Watanabe, K. et al. Imaging of pure spin-valley diffusion current in WS2–WSe2 heterostructures. Science 2018, 360, 893–896.

[151]

Huang, Z. M.; Liu, Y. D.; Dini, K.; Tan, Q. H.; Liu, Z. J.; Fang, H. L.; Liu, J.; Liew, T.; Gao, W. B. Robust room temperature valley hall effect of interlayer excitons. Nano Lett. 2020, 20, 1345–1351.

[152]

Cava, R.; de Leon, N.; Xie, W. W. Introduction: Quantum materials. Chem. Rev. 2021, 121, 2777–2779.

[153]

Orenstein, J. Ultrafast spectroscopy of quantum materials. Phys. Today 2012, 65, 44–50.

[154]

Kennes, D. M.; Claassen, M.; Xian, L. D.; Georges, A.; Millis, A. J.; Hone, J.; Dean, C. R.; Basov, D. N.; Pasupathy, A. N.; Rubio, A. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 2021, 17, 155–163.

[155]

Devarakonda, A.; Inoue, H.; Fang, S.; Ozsoy-Keskinbora, C.; Suzuki, T.; Kriener, M.; Fu, L.; Kaxiras, E.; Bell, D. C.; Checkelsky, J. G. Clean 2D superconductivity in a bulk van der Waals superlattice. Science 2020, 370, 231–236.

[156]

Zeng, Y. H.; Xia, Z. C.; Kang, K. F.; Zhu, J. C.; Knüppel, P.; Vaswani, C.; Watanabe, K.; Taniguchi, T.; Mak, K. F.; Shan, J. Thermodynamic evidence of fractional Chern insulator in moire MoTe2. Nature 2023, 622, 69–73.

[157]

Mori, R.; Ciocys, S.; Takasan, K.; Ai, P.; Currier, K.; Morimoto, T.; Moore, J. E.; Lanzara, A. Spin-polarized spatially indirect excitons in a topological insulator. Nature 2023, 614, 249–255.

[158]

Li, J. I. A.; Taniguchi, T.; Watanabe, K.; Hone, J.; Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 2017, 13, 751–755.

[159]

Tang, Y. H.; Su, K. X.; Li, L. Z.; Xu, Y.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Jian, C. M.; Xu, C. K. et al. Evidence of frustrated magnetic interactions in a Wigner–Mott insulator. Nat. Nanotechnol. 2023, 18, 233–237.

[160]

Cai, J. Q.; Anderson, E.; Wang, C.; Zhang, X. W.; Liu, X. Y.; Holtzmann, W.; Zhang, Y. N.; Fan, F. R.; Taniguchi, T.; Watanabe, K. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 2023, 622, 63–68.

[161]

Sharma, A.; Pu, S. Y.; Balram, A. C.; Jain, J. K. Fractional quantum Hall effect with unconventional pairing in monolayer graphene. Phys. Rev. Lett. 2023, 130, 126201.

[162]

Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

[163]

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[164]

Hu, J. X.; Tan, J. Y.; Al Ezzi, M. M.; Chattopadhyay, U.; Gou, J.; Zheng, Y. T.; Wang, Z. H.; Chen, J. Y.; Thottathil, R.; Luo, J. B. et al. Controlled alignment of supermoiré lattice in double-aligned graphene heterostructures. Nat. Commun. 2023, 14, 4142.

[165]

Debnath, B.; Barlas, Y.; Wickramaratne, D.; Neupane, M. R.; Lake, R. K. Exciton condensate in bilayer transition metal dichalcogenides: Strong coupling regime. Phys. Rev. B 2017, 96, 174504.

[166]

Fogler, M. M.; Butov, L. V.; Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 2014, 5, 4555.

[167]

Wu, F. C.; Lovorn, T.; Tutuc, E.; MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 2018, 121, 026402.

[168]

Wang, Z. F.; Rhodes, D. A.; Watanabe, K.; Taniguchi, T.; Hone, J. C.; Shan, J.; Mak, K. F. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 2019, 574, 76–80.

[169]

Combescot, M.; Combescot, R.; Dubin, F. Bose–Einstein condensation and indirect excitons: A review. Rep. Prog. Phys. 2017, 80, 066501.

[170]

Shi, Q. H.; Shih, E. M.; Rhodes, D.; Kim, B.; Barmak, K.; Watanabe, K.; Taniguchi, T.; Papić, Z.; Abanin, D. A.; Hone, J. et al. Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit. Nat. Nanotechnol. 2022, 17, 577–582.

[171]

Einstein, A. Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung. Sitz.ber. Preuss. Akad. Wiss. 1925, 1, 3–14

[172]

Anderson, M. H.; Ensher, J. R.; Matthews, M. R.; Wieman, C. E.; Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 1995, 269, 198–201.

[173]

Davis, K. B.; Mewes, M. O.; Andrews, M. R.; van Druten, N. J.; Durfee, D. S.; Kurn, D. M.; Ketterle, W. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 1995, 75, 3969–3973.

[174]

Deng, H.; Weihs, G.; Santori, C.; Bloch, J.; Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 2002, 298, 199–202.

[175]

Demokritov, S. O.; Demidov, V. E.; Dzyapko, O.; Melkov, G. A.; Serga, A. A.; Hillebrands, B.; Slavin, A. N. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 2006, 443, 430–433.

[176]

Klaers, J.; Schmitt, J.; Vewinger, F.; Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 2010, 468, 545–548.

[177]

Snoke, D. Spontaneous bose coherence of excitons and polaritons. Science 2002, 298, 1368–1372.

[178]

Wu, F. C.; Xue, F.; MacDonald, A. H. Theory of two-dimensional spatially indirect equilibrium exciton condensates. Phys. Rev. B 2015, 92, 165121.

[179]

Berman, O. L.; Kezerashvili, R. Y. High-temperature superfluidity of the two-component Bose gas in a transition metal dichalcogenide bilayer. Phys. Rev. B 2016, 93, 245410.

[180]

Yoon, Y.; Zhang, Z. C.; Qi, R. S.; Joe, A. Y.; Sailus, R.; Watanabe, K.; Taniguchi, T.; Tongay, S.; Wang, F. Charge transfer dynamics in MoSe2/hBN/WSe2 heterostructures. Nano Lett. 2022, 22, 10140–10146.

[181]

Xie, M.; MacDonald, A. H. Electrical reservoirs for bilayer excitons. Phys. Rev. Lett. 2018, 121, 067702.

[182]

Sigl, L.; Sigger, F.; Kronowetter, F.; Kiemle, J.; Klein, J.; Watanabe, K.; Taniguchi, T.; Finley, J. J.; Wurstbauer, U.; Holleitner, A. W. Signatures of a degenerate many-body state of interlayer excitons in a van der Waals heterostack. Phys. Rev. Res. 2020, 2, 042044.

[183]

Mott, N. F. The transition to the metallic state. Philos. Mag. 1961, 6, 287–309.

[184]

Ma, L. G.; Nguyen, P. X.; Wang, Z. F.; Zeng, Y. X.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Mak, K. F.; Shan, J. Strongly correlated excitonic insulator in atomic double layers. Nature 2021, 598, 585–589.

[185]

Chen, D. X.; Lian, Z.; Huang, X.; Su, Y.; Rashetnia, M.; Ma, L.; Yan, L.; Blei, M.; Xiang, L.; Taniguchi, T. et al. Excitonic insulator in a heterojunction moiré superlattice. Nat. Phys. 2022, 18, 1171–1176.

[186]

Gu, J.; Ma, L. G.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J. C.; Shan, J.; Mak, K. F. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 2022, 18, 395–400.

[187]

Zhang, Z. C.; Regan, E. C.; Wang, D. Q.; Zhao, W. Y.; Wang, S. X.; Sayyad, M.; Yumigeta, K.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. 2022, 18, 1214–1220.

[188]

Xiong, R. C.; Nie, J. H.; Brantly, S. L.; Hays, P.; Sailus, R.; Watanabe, K.; Taniguchi, T.; Tongay, S.; Jin, C. H. Correlated insulator of excitons in WSe2/WS2 moire superlattices. Science 2023, 380, 860–864.

[189]

Wang, T. M.; Li, Z. P.; Lu, Z. G.; Li, Y. M.; Miao, S. N.; Lian, Z.; Meng, Y. Z.; Blei, M.; Taniguchi, T.; Watanabe, K. et al. Observation of quantized exciton energies in monolayer WSe2 under a strong magnetic field. Phys. Rev. X 2020, 10, 021024.

[190]

Efimkin, D. K.; MacDonald, A. H. Exciton-polarons in doped semiconductors in a strong magnetic field. Phys. Rev. B 2018, 97, 235432.

[191]

Tang, Y. H.; Gu, J.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J. C.; Mak, K. F.; Shan, J. Dielectric catastrophe at the Wigner–Mott transition in a moiré superlattice. Nat. Commun. 2022, 13, 4271.

[192]

Xu, Y.; Liu, S.; Rhodes, D. A.; Watanabe, K.; Taniguchi, T.; Hone, J.; Elser, V.; Mak, K. F.; Shan, J. Correlated insulating states at fractional fillings of moiré superlattices. Nature 2020, 587, 214–218.

[193]

Huang, X.; Wang, T. M.; Miao, S. N.; Wang, C.; Li, Z. P.; Lian, Z.; Taniguchi, T.; Watanabe, K.; Okamoto, S.; Xiao, D. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 2021, 17, 715–719.

[194]

Li, H. Y.; Li, S. W.; Regan, E. C.; Wang, D. Q.; Zhao, W. Y.; Kahn, S.; Yumigeta, K.; Blei, M.; Taniguchi, T.; Watanabe, K. et al. Imaging two-dimensional generalized Wigner crystals. Nature 2021, 597, 650–654.

[195]

Pan, H. N.; Wu, F. C.; Das Sarma, S. Quantum phase diagram of a Moiré-Hubbard model. Phys. Rev. B 2020, 102, 201104.

[196]

Park, H.; Zhu, J. Y.; Wang, X.; Wang, Y. Q.; Holtzmann, W.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Fu, L.; Cao, T. et al. Dipole ladders with large Hubbard interaction in a moiré exciton lattice. Nat. Phys. 2023, 19, 1286–1292.

[197]

Wang, X.; Zhang, X. W.; Zhu, J. Y.; Park, H.; Wang, Y. Q.; Wang, C.; Holtzmann, W. G.; Taniguchi, T.; Watanabe, K.; Yan, J. Q. et al. Intercell moiré exciton complexes in electron lattices. Nat. Mater. 2023, 22, 599–604.

[198]

Lian, Z.; Chen, D. X.; Ma, L.; Meng, Y. Z.; Su, Y.; Yan, L.; Huang, X.; Wu, Q. R.; Chen, X. Y.; Blei, M. et al. Quadrupolar excitons and hybridized interlayer Mott insulator in a trilayer moiré superlattice. Nat. Commun. 2023, 14, 4604.

[199]

Wang, X.; Xiao, C. X.; Park, H.; Zhu, J. Y.; Wang, C.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Xiao, D.; Gamelin, D. R. et al. Light-induced ferromagnetism in moiré superlattices. Nature 2022, 604, 468–473.

[200]

Zeng, Y. H.; Xia, Z. C.; Dery, R.; Watanabe, K.; Taniguchi, T.; Shan, J.; Mak, K. F. Exciton density waves in Coulomb-coupled dual moiré lattices. Nat. Mater. 2023, 22, 175–179.

[201]

Kim, Y.; Kim, J. Near-field optical imaging and spectroscopy of 2D-TMDs. Nanophotonics 2021, 10, 3397–3415.

[202]

Hwangbo, S.; Hu, L.; Hoang, A. T.; Choi, J. Y.; Ahn, J. H. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 2022, 17, 500–506.

[203]

Wang, Y.; Kim, J. C.; Li, Y.; Ma, K. Y.; Hong, S.; Kim, M.; Shin, H. S.; Jeong, H. Y.; Chhowalla, M. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 2022, 610, 61–66.

[204]

Brotons-Gisbert, M.; Baek, H.; Molina-Sánchez, A.; Campbell, A.; Scerri, E.; White, D.; Watanabe, K.; Taniguchi, T.; Bonato, C.; Gerardot, B. D. Spin-layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 2020, 19, 630–636.

[205]

Vitale, S. A.; Nezich, D.; Varghese, J. O.; Kim, P.; Gedik, N.; Jarillo-Herrero, P.; Xiao, D.; Rothschild, M. Valleytronics: Opportunities, challenges, and paths forward. Small 2018, 14, 1801483.

[206]

Zhang, Y.; Yuan, N. F. Q.; Fu, L. Moiré quantum chemistry: Charge transfer in transition metal dichalcogenide superlattices. Phys. Rev. B 2020, 102, 201115.

[207]

Pan, H. N.; Das Sarma, S. Interaction-driven filling-induced metal-insulator transitions in 2D moiré lattices. Phys. Rev. Lett. 2021, 127, 096802.

[208]

Morales-Durán, N.; MacDonald, A. H.; Potasz, P. Metal-insulator transition in transition metal dichalcogenide heterobilayer moiré superlattices. Phys. Rev. B 2021, 103, L241110.

[209]

Nilsson, F.; Kuisma, M.; Pakdel, S.; Thygesen, K. S. Excitonic insulators and superfluidity in two-dimensional bilayers without external fields. J. Phys. Chem. Lett. 2023, 14, 2277–2283.

[210]

Liu, X. M.; Li, J. I. A.; Watanabe, K.; Taniguchi, T.; Hone, J.; Halperin, B. I.; Kim, P.; Dean, C. R. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 2022, 375, 205–209.

[211]

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226

Nano Research
Pages 4555-4572
Cite this article:
Tang J, Zheng Y, Jiang K, et al. Interlayer exciton dynamics of transition metal dichalcogenide heterostructures under electric fields. Nano Research, 2024, 17(5): 4555-4572. https://doi.org/10.1007/s12274-023-6325-3
Topics:

1331

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 28 August 2023
Revised: 20 October 2023
Accepted: 07 November 2023
Published: 07 December 2023
© Tsinghua University Press 2023
Return