AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unveiling non-radiative center control in CsPbBr3 nanocrystals: A comprehensive comparative analysis of hot injection and ligand-assisted reprecipitation approaches

Daocheng Hong1( )Yuchen Zhang3Shuhan Pan3Hanyu Liu2Wei Mao3Wanli Zhang4Yuhui Ye4Zhihong Wei2Xuxing Lu5Xiaoyong Wang4Zhenda Lu3Yuxi Tian2
Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou 350118, China
Show Author Information

Graphical Abstract

This paper demonstrated that different synthetic strategies can generate different surface quenchers which can significantly affect the photo-induced blinking behaviors of CsPbBr3 nanocrystals, opening up new possibilities for controlling defect engineering in such materials.

Abstract

Metal–halide perovskite nanocrystals (NCs) have gained significant attention in the field of optoelectronic and photonic devices due to their promising applications. Despite their exceptional optical properties, the impact of different synthetic strategies on the fundamental nature of NCs, such as nonradiative recombination centers, remains poorly understood. In this study, we investigated the photophysical properties of CsPbBr3 NCs synthesized using two distinct methods, hot injection and ligand-assisted reprecipitation, at the individual particle level. We observed different blinking behaviors under specific photoexcitation power densities and proposed, through intensity–lifetime analysis and Monte–Carlo simulations, that these different synthetic strategies can fabricate NCs with similar crystal structures but distinct surface quenchers with varying energy levels, which significantly affected the photo-induced blinking-down and blinking-up behaviors in individual NCs. Our findings indicate a practical and feasible approach for controlling defect engineering in perovskite NCs, with significant implications for their use in optoelectronic and other technological applications.

Electronic Supplementary Material

Download File(s)
12274_2023_6326_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Hao, M. M.; Bai, Y.; Zeiske, S.; Ren, L.; Liu, J. X.; Yuan, Y. B.; Zarrabi, N.; Cheng, N. Y.; Ghasemi, M.; Chen, P. et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1− x FA x PbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 2020, 5, 79–88.

[2]

Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–687.

[3]

Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.

[4]

Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

[5]

Liu, L.; Najar, A.; Wang, K.; Du, M. Y.; Liu, S. Perovskite quantum dots in solar cells. Adv. Sci. 2022, 9, 2104577.

[6]

Pan, Q.; Hu, H. C.; Zou, Y. T.; Chen, M.; Wu, L. Z.; Yang, D.; Yuan, X. L.; Fan, J.; Sun, B. Q.; Zhang, Q. Microwave-assisted synthesis of high-quality “all-inorganic” CsPbX3 (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes. J. Mater. Chem. C 2017, 5, 10947–10954.

[7]

Chen, M.; Zou, Y. T.; Wu, L. Z.; Pan, Q.; Yang, D.; Hu, H. C.; Tan, Y. S.; Zhong, Q. X.; Xu, Y.; Liu, H. Y. et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: From nanocube to ultrathin nanowire. Adv. Funct. Mater. 2017, 27, 1701121.

[8]

Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887–13892.

[9]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[10]

Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

[11]

Almeida, G.; Goldoni, L.; Akkerman, Q.; Dang, Z. Y.; Khan, A. H.; Marras, S.; Moreels, I.; Manna, L. Role of acid–base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 2018, 12, 1704–1711.

[12]

Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach, A. L. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2015, 2, 1500194.

[13]

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins, and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

[14]

Treber, F.; Frank, K.; Nickel, B.; Lampe, C.; Urban, A. S. Lead-free, luminescent perovskite nanocrystals obtained through ambient condition synthesis. Small 2023, 19, 2300525.

[15]

Huang, H.; Raith, J.; Kershaw, S. V.; Kalytchuk, S.; Tomanec, O.; Jing, L. H.; Susha, A. S.; Zboril, R.; Rogach, A. L. Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nat. Commun. 2017, 8, 996.

[16]

Ball, J. M.; Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 2016, 1, 16149.

[17]

Lignos, I.; Maceiczyk, R.; DeMello, A. J. Microfluidic technology: Uncovering the mechanisms of nanocrystal nucleation and growth. Acc. Chem. Res. 2017, 50, 1248–1257.

[18]

Huang, H. L.; Zhao, F. C.; Liu, L. G.; Zhang, F.; Wu, X. G.; Shi, L. J.; Zou, B. S.; Pei, Q. B.; Zhong, H. Z. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: An alternative route toward efficient light-emitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 28128–28133.

[19]

Huang, H.; Li, Y. X.; Tong, Y.; Yao, E. P.; Feil, M. W.; Richter, A. F.; Döblinger, M.; Rogach, A. L.; Feldmann, J.; Polavarapu, L. Spontaneous crystallization of perovskite nanocrystals in nonpolar organic solvents: A versatile approach for their shape-controlled synthesis. Angew. Chem., Int. Ed. 2019, 58, 16558–16562.

[20]

Jin, X. Y.; Ma, K. L.; Gao, H. F. Tunable luminescence and enhanced polar solvent resistance of perovskite nanocrystals achieved by surface-initiated photopolymerization. J. Am. Chem. Soc. 2022, 144, 20411–20420.

[21]

Hu, L.; Duan, L. P.; Yao, Y. C.; Chen, W. J.; Zhou, Z. Z.; Cazorla, C.; Lin, C. H.; Guan, X. W.; Geng, X.; Wang, F.et al. Quantum dot passivation of halide perovskite films with reduced defects, suppressed phase segregation, and enhanced stability. Adv. Sci. 2022, 9, 2102258.

[22]

DuBose, J. T.; Kamat, P. V. Energy versus electron transfer: Managing excited-state interactions in perovskite nanocrystal-molecular hybrids: Focus review. Chem. Rev. 2022, 122, 12475–12494.

[23]

Dong, Y. T.; Qiao, T.; Kim, D.; Parobek, D.; Rossi, D.; Son, D. H. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 2018, 18, 3716–3722.

[24]

Wang, S. S.; Du, L.; Jin, Z. C.; Xin, Y.; Mattoussi, H. Enhanced stabilization and easy phase transfer of CsPbBr3 perovskite quantum dots promoted by high-affinity polyzwitterionic ligands. J. Am. Chem. Soc. 2020, 142, 12669–12680.

[25]

Sarang, S.; Bonabi Naghadeh, S.; Luo, B. B.; Kumar, P.; Betady, E.; Tung, V.; Scheibner, M.; Zhang, J. Z.; Ghosh, S. Stabilization of the cubic crystalline phase in organometal halide perovskite quantum dots via surface energy manipulation. J. Phys. Chem. Lett. 2017, 8, 5378–5384.

[26]

Gao, Q. J.; Qi, J. H.; Chen, K.; Xia, M. H.; Hu, Y.; Mei, A. Y.; Han, H. W. Halide perovskite crystallization processes and methods in nanocrystals, single crystals, and thin films. Adv. Mater. 2022, 34, 2200720.

[27]

Mandal, S.; Mukherjee, S.; De, C. K.; Roy, D.; Ghosh, S.; Mandal, P. K. Extent of shallow/deep trap states beyond the conduction band minimum in defect-tolerant CsPbBr3 perovskite quantum dot: Control over the degree of charge carrier recombination. J. Phys. Chem. Lett. 2020, 11, 1702–1707.

[28]

Lin, X. Y.; Han, Y. Y.; Zhu, J. Y.; Wu, K. F. Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots. Nat. Nanotechnol. 2023, 18, 124–130.

[29]

Alosaimi, G.; Huang, C. Y.; Sharma, P.; Wu, T.; Seidel, J. Morphology-dependent charge carrier dynamics and ion migration behavior of CsPbBr3 halide perovskite quantum dot films. Small 2023, 19, 2207220.

[30]

Sharma, D. K.; Hirata, S.; Vacha, M. Single-particle electroluminescence of CsPbBr3 perovskite nanocrystals reveals particle-selective recombination and blinking as key efficiency factors. Nat. Commun. 2019, 10, 4499.

[31]

Chen, T. Y.; Huang, M. N.; Ye, Z. J.; Hua, J. H.; Lin, S.; Wei, L.; Xiao, L. H. Blinking CsPbBr3 perovskite nanocrystals for the nanoscopic imaging of electrospun nanofibers. Nano Res. 2021, 14, 1397–1404.

[32]

Xu, X. L.; Wang, S. Y.; Chen, Y.; Liu, W. W.; Wang, X. P.; Jiang, H. T.; Ma, S. Y.; Yun, P. D. CsPbBr3-based nanostructures for room-temperature sensing of volatile organic compounds. ACS Appl. Mater. Interfaces 2022, 14, 39524–39534.

[33]

Frantsuzov, P. A.; Volkán-Kacsó, S.; Jankó, B. Model of fluorescence intermittency of single colloidal semiconductor quantum dots using multiple recombination centers. Phys. Rev. Lett. 2009, 103, 207402.

[34]

Brennan, M. C.; Herr, J. E.; Nguyen-Beck, T. S.; Zinna, J.; Draguta, S.; Rouvimov, S.; Parkhill, J.; Kuno, M. Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals. J. Am. Chem. Soc. 2017, 139, 12201–12208.

[35]

Chen, J. S.; Žídek, K.; Chábera, P.; Liu, D. Z.; Cheng, P. F.; Nuuttila, L.; Al-Marri, M. J.; Lehtivuori, H.; Messing, M. E.; Han, K. L. et al. Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett. 2017, 8, 2316–2321.

[36]

Yamada, Y.; Yamada, T.; Phuong, L. Q.; Maruyama, N.; Nishimura, H.; Wakamiya, A.; Murata, Y.; Kanemitsu, Y. Dynamic optical properties of CH3NH3PbI3 single crystals as revealed by one- and two-photon excited photoluminescence measurements. J. Am. Chem. Soc. 2015, 137, 10456–10459.

[37]

Wen, X. M.; Feng, Y.; Huang, S. J.; Huang, F. Z.; Cheng, Y. B.; Green, M.; Ho-Baillie, A. Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites. J. Mater. Chem. C 2016, 4, 793–800.

[38]

Kim, J.; Godin, R.; Dimitrov, S. D.; Du, T.; Bryant, D.; McLachlan, M. A.; Durrant, J. R. Excitation density dependent photoluminescence quenching and charge transfer efficiencies in hybrid perovskite/organic semiconductor bilayers. Adv. Energy Mater. 2018, 8, 1802474.

[39]

Efros, A. L.; Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661–671.

[40]

Kim, T.; Jung, S. I.; Ham, S.; Chung, H.; Kim, D. Elucidation of photoluminescence blinking mechanism and multiexciton dynamics in hybrid organic–inorganic perovskite quantum dots. Small 2019, 15, 1900355.

[41]

Chen, R. Y.; Xia, B.; Zhou, W. J.; Zhang, G. F.; Qin, C. B.; Hu, J. Y.; Scheblykin, I. G.; Xiao, L. T. Environment-dependent metastable nonradiative recombination centers in perovskites revealed by photoluminescence blinking. Adv. Photonics Res. 2022, 3, 2100271.

[42]

van Huis, M. A.; Young, N. P.; Pandraud, G.; Creemer, J. F.; Vanmaekelbergh, D.; Kirkland, A. I.; Zandbergen, H. W. Atomic imaging of phase transitions and morphology transformations in nanocrystals. Adv. Mater. 2009, 21, 4992–4995.

[43]

Tan, Y. S.; Li, R. Y.; Xu, H.; Qin, Y. S.; Song, T.; Sun, B. Q. Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Adv. Funct. Mater. 2019, 29, 1900730.

[44]

Mahler, B.; Spinicelli, P.; Buil, S.; Quelin, X.; Hermier, J. P.; Dubertret, B. Towards non-blinking colloidal quantum dots. Nat. Mater. 2008, 7, 659–664.

[45]

Wei, Z. H.; Wang, B. Y.; Xie, M. C.; Hong, D. C.; Yang, X.; Wan, S. S.; Yang, W. Q.; Lu, S. Y.; Tian, Y. X. Effects of local matrix environment on the spectroscopic properties of ensemble to single-particle level carbon dots. Chin. Chem. Lett. 2022, 33, 751–756.

[46]

Wei, Z. H.; Wang, B. Y.; Hong, D. C.; Xie, M. C.; Wan, S. S.; Yang, W. Q.; Lu, S. Y.; Tian, Y. X. Rational building of nonblinking carbon dots via charged state recovery. J. Phys. Chem. Lett. 2021, 12, 8614–8620.

[47]

Chouhan, L.; Ito, S.; Thomas, E. M.; Takano, Y.; Ghimire, S.; Miyasaka, H.; Biju, V. Real-time blinking suppression of perovskite quantum dots by halide vacancy filling. ACS Nano 2021, 15, 2831–2838.

[48]

Galland, C.; Ghosh, Y.; Steinbrück, A.; Sykora, M.; Hollingsworth, J. A.; Klimov, V. I.; Htoon, H. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 2011, 479, 203–207.

[49]

Ahmed, T.; Seth, S.; Samanta, A. Mechanistic investigation of the defect activity contributing to the photoluminescence blinking of CsPbBr3 perovskite nanocrystals. ACS Nano 2019, 13, 13537–13544.

[50]

Li, Y. L.; Luo, X.; Ding, T.; Lu, X.; Wu, K. F. Size- and halide-dependent Auger recombination in lead halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2020, 59, 14292–14295.

[51]

Yuan, G. C.; Gómez, D. E.; Kirkwood, N.; Boldt, K.; Mulvaney, P. Two mechanisms determine quantum dot blinking. ACS Nano 2018, 12, 3397–3405.

[52]

Jha, P. P.; Guyot-Sionnest, P. Trion decay in colloidal quantum dots. ACS Nano 2009, 3, 1011–1015.

[53]

Scheblykin, I. G. Small number of defects per nanostructure leads to “digital” quenching of photoluminescence: The case of metal halide perovskites. Adv. Energy Mater. 2020, 10, 2001724.

[54]

Gerhard, M.; Louis, B.; Camacho, R.; Merdasa, A.; Li, J.; Kiligaridis, A.; Dobrovolsky, A.; Hofkens, J.; Scheblykin, I. G. Microscopic insight into non-radiative decay in perovskite semiconductors from temperature-dependent luminescence blinking. Nat. Commun. 2019, 10, 1698.

[55]

Eames, C.; Frost, J. M.; Barnes, P. R. F.; O’Regan, B. C.; Walsh, A.; Islam, M. S. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 2015, 6, 7497.

[56]

Wang, Y.; Ren, Y. J.; Zhang, S. L.; Wu, J. F.; Song, J. Z.; Li, X. M.; Xu, J. Y.; Sow, C. H.; Zeng, H. B.; Sun, H. D. Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air. Commun. Phys. 2018, 1, 96.

[57]

Kang, J. Effects of band edge positions on defect structure in lead halide perovskites: A case study on the Br vacancy in CsPbBr3. Phys. Rev. Mater. 2020, 4, 085405.

[58]

Agiorgousis, M. L.; Sun, Y. Y.; Zeng, H.; Zhang, S. B. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J. Am. Chem. Soc. 2014, 136, 14570–14575.

[59]

Zhang, J. R.; Zhao, W. G.; Olthof, S.; Liu, S. Defects in CsPbX3 perovskite: From understanding to effective manipulation for high-performance solar cells. Small Methods 2021, 5, 2100725.

[60]

Hong, D. C.; Zhang, Y. C.; Pan, S. H.; Liu, H. Y.; Mao, W.; Lu, Z. D.; Tian, Y. X. Moisture-dependent blinking of individual CsPbBr3 nanocrystals revealed by single-particle spectroscopy. J. Phys. Chem. Lett. 2022, 13, 10751–10758.

[61]

Chouhan, L.; Ghimire, S.; Biju, V. Blinking beats bleaching: The control of superoxide generation by photo-ionized perovskite nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 4875–4879.

[62]

Yan, D. D.; Shi, T. C.; Zang, Z. G.; Zhou, T. W.; Liu, Z. Z.; Zhang, Z. Y.; Du, J.; Leng, Y. X.; Tang, X. S. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small 2019, 15, 1901173.

[63]

Tang, X. S.; Yang, J.; Li, S. Q.; Liu, Z. Z.; Hu, Z. P.; Hao, J. Y.; Du, J.; Leng, Y. X.; Qin, H. Y.; Lin, X. et al. Single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties. Adv. Sci. 2019, 6, 1900412.

Nano Research
Pages 4525-4534
Cite this article:
Hong D, Zhang Y, Pan S, et al. Unveiling non-radiative center control in CsPbBr3 nanocrystals: A comprehensive comparative analysis of hot injection and ligand-assisted reprecipitation approaches. Nano Research, 2024, 17(5): 4525-4534. https://doi.org/10.1007/s12274-023-6326-2
Topics:

801

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 31 August 2023
Revised: 29 October 2023
Accepted: 08 November 2023
Published: 07 December 2023
© Tsinghua University Press 2023
Return