AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Assembling ionic liquid into porous molecular filler of mixed matrix membrane to trigger high gas permeability, selectivity, and stability for CO2/CH4 separation

Liting Yu1Liqin Hao2Yang Feng3Jia Pang1Mengwei Guo4Liangjun Li4Weidong Fan1Lili Fan1Rongming Wang1( )Zixi Kang1( )Daofeng Sun1
School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
College of Chemistry, Nankai University, Tianjin 300071, China
College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Graphical Abstract

The ionic liquid was introduced into the molecular fillers of porous organic cage CC3, to construct the ionic liquid@CC3/PIM-1 membrane for the efficient separation of CO2 from CH4.

Abstract

As an emerging zero-dimensional nano crystalline porous material, porous organic cages (POCs) with soluble properties in organic solvents, are promising candidates as molecular fillers in mixed matrix membranes (MMMs). The pore structure of POCs should be adjusted to trigger efficient gas separation performance, and the interaction between filler and matrix should be optimized. In this work, ionic liquid (IL) was introduced into the molecular fillers of CC3, to construct the IL@CC3/PIM-1 membrane to effectively separate CO2 from CH4. The advantages of doping IL include: (1) narrowing the cavity size of POCs from 4.4 to 3.9 Å to enhance the diffusion selectivity, (2) strengthening the CO2 solubility to heighten the gas permeability, and (3) improving the compatibility between filler and matrix to upgrade membrane stability. After the optimization of the membrane composite, the IL@CC3/PIM-1-10% membrane possesses the CO2 permeability of 7868 Barrer and the CO2/CH4 selectivity of 73.4, which compared to the CC3/PIM-1-10% membrane, improved by 15.9% and 106.2%, respectively. Furthermore, the membrane has maintained a stable separation performance at varied temperatures and pressures during the long-term test. The proposed method offers an efficient way to improve the performance of POCs-based MMMs in gas separation.

Electronic Supplementary Material

Download File(s)
12274_2023_6329_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Marques, A. C.; Pires, P. S. Is there a resource curse phenomenon for natural gas? Evidence from countries with abundant natural gas. Resour. Policy. 2019, 63, 101466.

[2]

Xiao, Y. P.; Li, J.; Zhu, L. Surrogacy in China: A dilemma between public policy and the best interests of children. Int. J. Law Policy Fam. 2020, 34, 1–19.

[3]

Rufford, T. E.; Smart, S.; Watson, G. C. Y.; Graham, B. F.; Boxall, J.; da Costa, J. C. D.; May, E. F. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. J. Petrol. Sci. Eng. 2012, 94–95, 123–154

[4]

Harsha, S.; Khakharia, P.; Huizinga, A.; Monteiro, J.; Goetheer, E.; Vlugt, T. J. H. In-situ experimental investigation on the growth of aerosols along the absorption column in post combustion carbon capture. Int. J. Greenh. Gas Control 2019, 85, 86–99.

[5]

Majeed, H.; Knuutila, H. K.; Hillestad, M.; Svendsen, H. F. Characterization and modelling of aerosol droplet in absorption columns. Int. J. Greenh. Gas Control 2017, 58, 114–126.

[6]

Liang, Z. W.; Fu, K. Y.; Idem, R.; Tontiwachwuthikul, P. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents. Chin. J. Chem. Eng. 2016, 24, 278–288.

[7]

Sreedhar, I.; Nahar, T.; Venugopal, A.; Srinivas, B. Carbon capture by absorption-path covered and ahead. Renew. Sustain. Energy Rev. 2017, 76, 1080–1107.

[8]

Bara, J. E.; Camper, D. E.; Gin, D. L.; Noble, R. D. Room-temperature ionic liquids and composite materials: Platform technologies for CO2 Capture. Acc. Chem. Res. 2010, 43, 152–159.

[9]

Hegde, M.; Shahid, S.; Norder, B.; Dingemans, T. J.; Nijmeijer, K. Gas transport in metal organic framework-polyetherimide mixed matrix membranes: The role of the polyetherimide backbone structure. Polymer 2015, 81, 87–98.

[10]

Robeson, L. M. The upper bound revisited. J. Mem. Sci. 2008, 320, 390–400.

[11]

Hou, R. J.; Smith, S. J. D.; Wood, C. D.; Mulder, R. J.; Lau, C. H.; Wang, H. T.; Hill, M. R. Solvation effects on the permeation and aging performance of PIM-1-based MMMs for gas separation. ACS Appl. Mater. Interfaces 2019, 11, 6502–6511.

[12]

Mohsenpour, S.; Guo, Z. M.; Almansour, F.; Holmes, S. M.; Budd, P. M.; Gorgojo, P. Porous silica nanosheets in PIM-1 membranes for CO2 separation. J. Membrane Sci. 2022, 661, 120889.

[13]

Ameen, A. W.; Ji, J.; Tamaddondar, M.; Moshenpour, S.; Foster, A. B.; Fan, X. L.; Budd, P. M.; Mattia, D.; Gorgojo, P. 2D boron nitride nanosheets in PIM-1 membranes for CO2/CH4 separation. J. Membrane Sci. 2021, 636, 119527

[14]

Mohsenpour, S.; Ameen, A. W.; Leaper, S.; Skuse, C.; Almansour, F.; Budd, P. M.; Gorgojo, P. PIM-1 membranes containing POSS-graphene oxide for CO2 separation. Sep. Purif. Technol. 2022, 298, 121447.

[15]

Bae, T. H.; Liu, J. Q.; Lee, J. S.; Koros, W. J.; Jones, C. W.; Nair, S. Facile high-yield solvothermal deposition of inorganic nanostructures on zeolite crystals for mixed matrix membrane fabrication. J. Am. Chem. Soc. 2009, 131, 14662–14663.

[16]

Khdhayyer, M. R.; Esposito, E.; Fuoco, A.; Monteleone, M.; Giorno, L.; Jansen, J. C.; Attfield, M. P.; Budd, P. M. Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1. Sep. Purif. Technol. 2017, 173, 304–313.

[17]

Thür, R.; Van Havere, D.; Van Velthoven, N.; Smolders, S.; Lamaire, A.; Wieme, J.; Van Speybroeck, V.; De Vos, D.; Vankelecom, I. F. J. Correlating MOF-808 parameters with mixed-matrix membrane (MMM) CO2 permeation for a more rational MMM development. J. Mater. Chem. A 2021, 9, 12782–12796.

[18]

Aydin, S.; Altintas, C.; Keskin, S. High-throughput screening of COF membranes and COF/polymer MMMs for helium separation and hydrogen purification. ACS Appl. Mater. Interfaces 2022, 14, 21738–21749.

[19]

Kang, Z. X.; Peng, Y. W.; Qian, Y. H.; Yuan, D. Q.; Addicoat, M. A.; Heine, T.; Hu, Z. G.; Tee, L.; Guo, Z. G.; Zhao, D. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 2016, 28, 1277–1285.

[20]

Chung, T. S.; Jiang, L. Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–507.

[21]

Dong, G. X.; Li, H. Y.; Chen, V. Challenges and opportunities for mixed-matrix membranes for gas separation. J. Mater. Chem. A 2013, 1, 4610–4630.

[22]

Rezakazemi, M.; Ebadi Amooghin, A.; Montazer-Rahmati, M. M.; Ismail, A. F.; Matsuura, T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci. 2014, 39, 817–861.

[23]

Bano, S.; Tariq, S. R.; Anjum, T.; Najam, M.; Usman, M.; Yasin, M.; Shafi, H. Z.; Khan, A. L. Development of highly permselective mixed matrix membranes comprising of polyimide and Ln-MOF for CO2 capture. Chemosphere 2022, 307, 136051.

[24]

Zhao, Z. Y.; Jiang, J. W. POC/PIM-1 mixed-matrix membranes for water desalination: A molecular simulation study. J. Membrane Sci. 2020, 608, 118173

[25]

Zhu, G. H.; O'Nolan, D.; Lively, R. P. Molecularly mixed composite membranes: Challenges and opportunities. Chem.—Eur. J. 2020, 26, 3464–3473.

[26]

Mao, H. C.; Zhang, S. B. Mixed-matrix membranes incorporated with porous shape-persistent organic cages for gas separation. J. Colloid Interf. Sci. 2017, 490, 29–36.

[27]

Zhai, Z.; Zhao, N.; Liu, J. H.; Dong, W. J.; Li, P.; Sun, H. X.; Jason Niu, Q. Advanced nanofiltration membrane fabricated on the porous organic cage tailored support for water purification application. Sep. Purif. Technol. 2020, 230, 115845.

[28]

Tozawa, T.; Jones, J. T. A.; Swamy, S. I.; Jiang, S.; Adams, D. J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S. Y. et al. Porous organic cages. Nat. Mater. 2009, 8, 973–978.

[29]

Slater, A. G.; Little, M. A.; Briggs, M. E.; Jelfs, K. E.; Cooper, A. I. A solution-processable dissymmetric porous organic cage. Mol. Syst. Des. Eng. 2018, 3, 223–227.

[30]

Lucero, J. M.; Carreon, M. A. Separation of light gases from Xenon over porous organic cage membranes. ACS Appl. Mater. Interfaces 2020, 12, 32182–32188.

[31]

Xu, T. T.; Wu, B.; Hou, L. X.; Zhu, Y. R.; Sheng, F. M.; Zhao, Z.; Dong, Y.; Liu, J. D.; Ye, B. J.; Li, X. Y. et al. Highly ion-permselective porous organic cage membranes with hierarchical channels. J. Am. Chem. Soc. 2022, 144, 10220–10229.

[32]

Jiang, S.; Song, Q. L.; Massey, A.; Chong, S. Y.; Chen, L. J.; Sun, S. J.; Hasell, T.; Raval, R.; Sivaniah, E.; Cheetham, A. K. et al. Oriented two-dimensional porous organic cage crystals. Angew. Chem., Int. Ed. 2017, 56, 9391–9395.

[33]

O'Reilly, N.; Giri, N.; James, S. L. Porous liquids. Chem.—Eur. J. 2007, 13, 3020–3025.

[34]

Ma, L.; Haynes, C. J. E.; Grommet, A. B.; Walczak, A.; Parkins, C. C.; Doherty, C. M.; Longley, L.; Tron, A.; Stefankiewicz, A. R.; Bennett, T. D. et al. Coordination cages as permanently porous ionic liquids. Nat. Chem. 2020, 12, 270–275.

[35]

Wei, W.; Wang, M.; Jiang, J. W. Molecular simulation study on molecularly mixed porous organic cage/polymer composite membranes for water desalination and solvent recovery. ACS Appl. Nano Mater. 2021, 4, 10378–10388.

[36]

Bushell, A. F.; Budd, P. M.; Attfield, M. P.; Jones, J. T. A.; Hasell, T.; Cooper, A. I.; Bernardo, P.; Bazzarelli, F.; Clarizia, G.; Jansen, J. C. Nanoporous organic polymer/cage composite membranes. Angew. Chem., Int. Ed. 2013, 52, 1253–1256.

[37]

Zhu, G. H.; Zhang, F. Y.; Rivera, M. P.; Hu, X. X.; Zhang, G. Y.; Jones, C. W.; Lively, R. P. Molecularly mixed composite membranes for advanced separation processes. Angew. Chem., Int. Ed. 2019, 58, 2638–2643.

[38]

Rivera, M. P.; Lively, R. P. Analysis of gas transport in molecularly-mixed composite membranes. J. Membrane Sci. 2022, 661, 120880.

[39]

Zhang, Q.; Li, H. B.; Chen, S.; Duan, J. G.; Jin, W. Q. Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation. J. Membrane Sci. 2020, 611, 118288.

[40]

Feng, Y.; Wang, Z. K.; Fan, W. D.; Kang, Z. X.; Feng, S.; Fan, L. L.; Hu, S. Q.; Sun, D. F. Engineering the pore environment of metal-organic framework membranes via modification of the secondary building unit for improved gas separation. J. Mater. Chem. A 2020, 8, 13132–13141.

[41]

Zheng, W. J.; Ding, R.; Dai, Y.; Ruan, X. H.; Li, X. C.; Jiang, X. B.; He, G. H. Regulating the pore engineering of MOFs by the confined dissolving of PSA template to improve CO2 capture. J. Membrane Sci. 2023, 670, 121373.

[42]

Zou, X. Q.; Zhu, G. S. Microporous organic materials for membrane-based gas separation. Adv. Mater. 2018, 30, 1700750.

[43]

Kinik, F. P.; Uzun, A.; Keskin, S. Ionic liquid/metal-organic framework composites: From synthesis to applications. ChemSusChem 2017, 10, 2842–2863.

[44]

Guo, Z. X.; Zheng, W. J.; Yan, X. M.; Dai, Y.; Ruan, X. H.; Yang, X. C.; Li, X. C.; Zhang, N.; He, G. H. Ionic liquid tuning nanocage size of MOFs through a two-step adsorption/infiltration strategy for enhanced gas screening of mixed-matrix membranes. J. Membrane Sci. 2020, 605, 118101.

[45]

Chen, W. B.; Zhang, Z. G.; Yang, C. C.; Liu, J.; Shen, H. C.; Yang, K.; Wang, Z. PIM-based mixed-matrix membranes containing MOF-801/ionic liquid nanocomposites for enhanced CO2 separation performance. J. Membrane Sci. 2021, 636, 119581.

[46]

Ferreira, I. C.; Ferreira, T. J.; Barbosa, A. D. S.; de Castro, B.; Ribeiro, R. P. P. L.; Mota, J. P. B.; Alves, V. D.; Cunha-Silva, L.; Esteves, I. A. A. C.; Neves, L. A. Cr-based MOF/IL composites as fillers in mixed matrix membranes for CO2 separation. Sep. Purif. Technol. 2021, 276, 119303.

[47]

Ban, Y. J.; Li, Z. J.; Li, Y. S.; Peng, Y.; Jin, H.; Jiao, W. M.; Guo, A.; Wang, P.; Yang, Q. Y.; Zhong, C. L. et al. Confinement of ionic liquids in nanocages: Tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture. Angew. Chem., Int. Ed. 2015, 54, 15483–15487

[48]

Chen, L. J.; Reiss, P. S.; Chong, S. Y.; Holden, D.; Jelfs, K. E.; Hasell, T.; Little, M. A.; Kewley, A.; Briggs, M. E.; Stephenson, A. et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater. 2014, 13, 954–960

[49]

Li, H.; Tuo, L.; Yang, K.; Jeong, H. K.; Dai, Y.; He, G. H.; Zhao, W. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid. J. Membrane Sci. 2016, 511, 130–142.

[50]

Sun, Y. X.; Huang, H. L.; Vardhan, H.; Aguila, B.; Zhong, C. L.; Perman, J. A.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Q. Facile approach to graft ionic liquid into MOF for improving the efficiency of CO2 chemical fixation. ACS Appl. Mater. Interfaces 2018, 10, 27124–27130.

[51]

Zhu, X.; Song, M. L.; Xu, Y. J. DBU-based protic ionic liquids for CO2 capture. ACS Sustain. Chem. Eng. 2017, 5, 8192–8198.

[52]

Bai, L.; Shang, D. W.; Li, M. D.; Dai, Z. D.; Deng, L. Y.; Zhang, X. P. CO2 absorption with ionic liquids at elevated temperatures. J. Energy Chem. 2017, 26, 1001–1006

[53]

Lin, R. J.; Ge, L.; Diao, H.; Rudolph, V.; Zhu, Z. H. Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation. ACS Appl. Mater. Interfaces 2016, 8, 32041–32049.

[54]

Habib, N.; Durak, O.; Zeeshan, M.; Uzun, A.; Keskin, S. A novel IL/MOF/polymer mixed matrix membrane having superior CO2/N2 selectivity. J. Membrane Sci. 2022, 658, 120712.

[55]

Xiao, Z. L.; Larson, R. G.; Chen, Y. L.; Zhou, C. T.; Niu, Y. H.; Li, G. X. Unusual phase separation and rheological behavior of poly(ethylene oxide)/ionic liquid mixtures with specific interactions. Soft Matter 2016, 12, 7613–7623.

[56]

Fam, W.; Mansouri, J.; Li, H. Y.; Hou, J. W.; Chen, V. Gelled graphene oxide-ionic liquid composite membranes with enriched ionic liquid surfaces for improved CO2 separation. ACS Appl. Mater. Interfaces 2018, 10, 7389–7400.

[57]

Pu, Y. C.; Yang, Z. Q.; Wee, V.; Wu, Z. J.; Jiang, Z. Y.; Zhao, D. Amino-functionalized NUS-8 nanosheets as fillers in PIM-1 mixed matrix membranes for CO2 separations. J. Membrane Sci. 2022, 641, 119912.

[58]

Jiang, Z. H.; Wang, Y.; Sheng, M. L.; Zha, Z. Y.; Wang, J. X.; Wang, Z.; Zhao, S. A highly permeable porous organic cage composite membrane for gas separation. J. Mater. Chem. A 2023, 11, 6831–6841.

[59]

Bushell, A. F.; Attfield, M. P.; Mason, C. R.; Budd, P. M.; Yampolskii, Y.; Starannikova, L.; Rebrov, A.; Bazzarelli, F.; Bernardo, P.; Carolus Jansen, J. et al. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membrane Sci. 2013, 427, 48–62.

[60]

Luque-Alled, J. M.; Ameen, A. W.; Alberto, M.; Tamaddondar, M.; Foster, A. B.; Budd, P. M.; Vijayaraghavan, A.; Gorgojo, P. Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives. J. Membrane Sci. 2021, 623, 118902.

[61]

Song, Q. L.; Nataraj, S. K.; Roussenova, M. V.; Tan, J. C.; Hughes, D. J.; Li, W.; Bourgoin, P.; Alam, M. A.; Cheetham, A. K.; Al-Muhtaseb, S. A. et al. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 2012, 5, 8359–8369.

[62]

Lapshin, D. N.; Jorge, M.; Campbell, E. E. B.; Sarkisov, L. On competitive gas adsorption and absorption phenomena in thin films of ionic liquids. J. Mater. Chem. A 2020, 8, 11781–11799.

[63]

Liu, S.; Kang, Z. X.; Fan, L. L.; Li, X. T.; Zhang, B. C.; Feng, Y.; Liu, H. Y.; Fan, W. D.; Wang, R. M.; Sun, D. F. Carbon molecular sieve membranes derived from hydrogen-bonded organic frameworks for CO2/CH4 separation. J. Membrane Sci. 2023, 678, 121674.

[64]

Comesaña-Gándara, B.; Chen, J.; Bezzu, C. G.; Carta, M.; Rose, I.; Ferrari, M. C.; Esposito, E.; Fuoco, A.; Jansen, J. C.; McKeown, N. B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 2019, 12, 2733–2740.

[65]

Hao, L.; Li, P.; Yang, T. X.; Chung, T. S. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. J. Membrane Sci. 2013, 436, 221–231.

[66]

Rajati, H.; Navarchian, A. H.; Rodrigue, D.; Tangestaninejad, S. Effect of immobilizing ionic liquid on amine-functionalized MIL-101(Cr) incorporated in matrimid membranes for CO2/CH4 separation. Chem. Eng. Process.- Process Intensif. 2021, 168, 108590.

[67]

Sampaio, A. M.; Nabais, A. R.; Tomé, L. C.; Neves, L. A. Impact of MOF-5 on pyrrolidinium-based poly(ionic liquid)/ionic liquid membranes for biogas upgrading. Ind. Eng. Chem. Res. 2020, 59, 308–317.

Nano Research
Pages 4535-4543
Cite this article:
Yu L, Hao L, Feng Y, et al. Assembling ionic liquid into porous molecular filler of mixed matrix membrane to trigger high gas permeability, selectivity, and stability for CO2/CH4 separation. Nano Research, 2024, 17(5): 4535-4543. https://doi.org/10.1007/s12274-023-6329-z
Topics:

642

Views

4

Crossref

3

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 21 July 2023
Revised: 30 October 2023
Accepted: 12 November 2023
Published: 07 December 2023
© Tsinghua University Press 2023
Return