With the advent of tissue engineering and biomedicine, the creation of extracellular matrix (ECM) biomaterials for in vitro applications has become a prominent and promising strategy. These ECM materials provide physical, biochemical, and mechanical properties that guide cellular behaviors, such as proliferation, differentiation, migration, and apoptosis. Because micro- and nano-patterned materials have a unique surface topology and low energy replication process that directly affect cellular biological behaviors at the interface, the fabrication of micro-nano pattern biomaterials and the regulation of surface physical and chemical properties are of great significance in the fields of cell regulation, tissue engineering, and regenerative medicine. Herein, we provide a comprehensive review of the progress in the fabrication and application of patterned materials based on the coupling of mechanical action at the micro- and nano-meter scale, including photolithography, micro-contact printing, electron beam lithography, electrospinning, and 3D printing technology. Furthermore, a summary of the fabrication process, underlying principles, as well as the advantages and disadvantages of various technologies are reviewed. We also discuss the influence of material properties on the fabrication of micro- and nano-patterns.
Discher, D. E.; Janmey, P.; Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139–1143.
Satyam, A.; Kumar, P.; Fan, X. L.; Gorelov, A.; Rochev, Y.; Joshi, L.; Peinado, H.; Lyden, D.; Thomas, B.; Rodriguez, B. et al. Macromolecular crowding meets tissue engineering by self-assembly: A paradigm shift in regenerative medicine. Adv. Mater. 2014, 26, 3024–3034.
Ji, T. J.; Zhao, Y.; Ding, Y. P.; Nie, G. J. Using functional nanomaterials to target and regulate the tumor microenvironment: Diagnostic and therapeutic applications. Adv. Mater. 2013, 25, 3508–3525.
Özbek, S.; Balasubramanian, P. G.; Chiquet-Ehrismann, R.; Tucker, R. P.; Adams, J. C. The evolution of extracellular matrix. Mol. Biol. Cell 2010, 21, 4300–4305.
Hynes, R. O. The extracellular matrix: Not just pretty fibrils. Science 2009, 326, 1216–1219.
Page-McCaw, A.; Ewald, A. J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 2007, 8, 221–233.
Watt, F. M.; Huck, W. T. S. Role of the extracellular matrix in regulating stem cell fate. Nat. Rev. Mol. Cell Biol. 2013, 14, 467–473.
Lu, P. F.; Weaver, V. M.; Werb, Z. The extracellular matrix: A dynamic niche in cancer Progression. J. Cell Biol. 2012, 196, 395–406.
Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K. Extracellular matrix structure. Advanced Drug Delivery Reviews 2016, 97, 4–27.
Sun, Y. B.; Chen, C. S.; Fu, J. P. Forcing stem cells to behave: A biophysical perspective of the cellular microenvironment. Annu. Rev. Biophys. 2012, 41, 519–542.
Chen, F. M.; L, X. H . Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 2016, 53, 86–168.
Park, J.; Kim, D. H.; Kim, H. N.; Wang, C. J.; Kwak, M. K.; Hur, E.; Suh, K. Y.; An, S. S.; Levchenko, A. Directed migration of cancer cells guided by the graded texture of the underlying matrix. Nat. Mater. 2016, 15, 792–801.
Jeon, H.; Koo, S.; Reese, W. M.; Loskill, P.; Grigoropoulos, C. P.; Healy, K. E. Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nat. Mater. 2015, 14, 918–923.
Doyle, A. D.; Yamada, K. M. Mechanosensing via cell-matrix adhesions in 3D microenvironments. Exp. Cell Res. 2016, 343, 60–66.
Mammoto, A.; Mammoto, T.; Ingber, D. E. Mechanosensitive mechanisms in transcriptional regulation. J. Cell Sci. 2012, 125, 3061–3073.
Wozniak, M. A.; Desai, R.; Solski, P. A.; Der, C. J.; Keely, P. J. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol. 2003, 163, 583–595.
Wolf, K.; Friedl, P. Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin. Exp. Metastasis 2009, 26, 289–298.
Jansen, K. A.; Donato, D. M.; Balcioglu, H. E.; Schmidt, T.; Danen, E. H. J.; Koenderink, G. H. A guide to mechanobiology: Where biology and physics meet. Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 3043–3052.
Jaalouk, D. E.; Lammerding, J. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 2009, 10, 63–73.
Dupont, S.; Morsut, L.; Aragona, M.; Enzo, E.; Giulitti, S.; Cordenonsi, M.; Zanconato, F.; Le Digabel, J.; Forcato, M.; Bicciato, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 2011, 474, 179–183.
Huveneers, S.; de Rooij, J. Mechanosensitive systems at the cadherin-F-actin interface. J. Cell Sci. 2013, 126, 403–413.
Hynes, R. O. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 1992, 69, 11–25.
Hynes, R. O. Integrins: Bidirectional, allosteric signaling machines. Cell 2002, 110, 673–687.
Brizzi, M. F.; Tarone, G.; Defilippi, P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 2012, 24, 645–651.
Dufort, C. C.; Paszek, M. J.; Weaver, V. M. Balancing forces: Architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 2011, 12, 308–319.
Halder, G.; Dupont, S.; Piccolo, S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 2012, 13, 591–600.
Legate, K. R.; Wickström, S. A.; Fässler, R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 2009, 23, 397–418.
Buitenhuis, M. The role of PI3K/protein kinase B (PKB/c-akt) in migration and homing of hematopoietic stem and progenitor cells. Curr. Opin. Hematol. 2011, 18, 226–230.
Discher, D. E.; Mooney, D. J.; Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 2009, 324, 1673–1677.
Rozario, T.; Desimone, D. W. The extracellular matrix in development and morphogenesis: A dynamic view. Dev. Biol. 2010, 341, 126–140.
Macbarb, R. F.; Makris, E. A.; Hu, J. C.; Athanasiou, K. A. A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage. Acta Biomater. 2013, 9, 4626–4634.
Burdick, J. A.; Murphy, W. L. Moving from static to dynamic complexity in hydrogel design. Nat. Commun. 2012, 3, 1269.
Gong, T.; Lu, L. X.; Liu, D.; Liu, X.; Zhao, K.; Chen, Y. P.; Zhou, S. B. Dynamically tunable polymer microwells for directing mesenchymal stem cell differentiation into osteogenesis. J. Mater. Chem. B 2015, 3, 9011–9022.
Higuchi, A.; Ling, Q. D.; Chang, Y. N.; Hsu, S. T.; Umezawa, A. Physical cues of biomaterials guide stem cell differentiation fate. Chem. Rev. 2013, 113, 3297–3328.
Yang, G.; Li, X. L.; He, Y.; Ma, J. K.; Ni, G. L.; Zhou, S. B. From Nano to micro to macro: Electrospun hierarchically structured polymeric fibers for biomedical applications. Prog. Polym. Sci. 2018, 81, 80–113.
Friess, F.; Nöchel, U.; Lendlein, A.; Wischke, C. Polymer micronetworks with shape-memory as future platform to explore shape-dependent biological effects. Adv. Healthc. Mater. 2014, 3, 1986–1990.
Hou, Y.; Jiang, N.; Zhang, L.; Li, Y. B.; Meng, Y. Z.; Han, D. M.; Chen, C.; Yang, Y.; Zhu, S. S. Oppositely charged polyurethane microspheres with tunable zeta potentials as an injectable dual-loaded system for bone repair. ACS Appl. Mater. Interfaces 2017, 9, 25808–25817.
Lu, T.; Hu, H.; Li, Y. Q.; Jiang, Q. S.; Su, J. L.; Lin, H.; Xiao, Y.; Zhu, X. D.; Zhang, X. D. Bioactive scaffolds based on collagen filaments with tunable physico-chemical and biological features. Soft Matter 2020, 16, 4540–4548.
Ajili, S. H.; Ebrahimi, N. G.; Soleimani, M. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater. 2009, 5, 1519–1530.
Tsuda, Y.; Kikuchi, A.; Yamato, M.; Nakao, A.; Sakurai, Y.; Umezu, M.; Okano, T. The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials 2005, 26, 1885–1893.
Tsuda, Y.; Kikuchi, A.; Yamato, M.; Chen, G. P.; Okano, T. Heterotypic cell interactions on a dually patterned surface. Biochem. Biophys. Res. Commun. 2006, 348, 937–944.
Liu, X.; Zhao, K.; Gong, T.; Song, J.; Bao, C. Y.; Luo, E.; Weng, J.; Zhou, S. B. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules 2014, 15, 1019–1030.
Zhang, D. J.; Cheng, Z. J.; Kang, H. J.; Yu, J. X.; Liu, Y. Y.; Jiang, L. A smart superwetting surface with responsivity in both surface chemistry and microstructure. Angew. Chem. 2018, 130, 3763–3767.
Zhao, Q. L.; Wang, J.; Cui, H. Q.; Chen, H. X.; Wang, Y. L.; Du, X. M. Programmed shape-morphing scaffolds enabling facile 3D endothelialization. Adv. Funct. Mater. 2018, 28, 1801027.
Gong, T.; Zhao, K.; Liu, X.; Lu, L. X.; Liu, D.; Zhou, S. B. A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization. Small 2016, 12, 5769–5778.
Liu, Y. J.; Guo, Y. J.; Zhang, X. Q.; Gao, G. Q.; Shi, C. Q.; Huang, G. Z.; Li, P. L.; Kang, Q.; Huang, X. Y.; Wu, G. N. Self-cleaning of superhydrophobic nanostructured surfaces at low humidity enhanced by vertical electric field. Nano Res. 2022, 15, 4732–4738.
Feng, Z. P.; He, Q.; Wang, X.; Liu, J.; Qiu, J.; Wu, Y. F.; Yang, J. Multimode human-machine interface using a single-channel and patterned triboelectric sensor. Nano Res. 2022, 15, 9352–9358.
Deng, J.; Zhao, C. S.; Spatz, J. P.; Wei, Q. Nanopatterned adhesive, stretchable hydrogel to control ligand spacing and regulate cell spreading and migration. ACS Nano 2017, 11, 8282–8291.
Han, Y. L.; Wang, S. Q.; Zhang, X. H.; Li, Y. H.; Huang, G. Y.; Qi, H.; Pingguan-Murphy, B.; Li, Y. H.; Lu, T. J.; Xu, F. Engineering physical microenvironment for stem cell based regenerative medicine. Drug Discov. Today 2014, 19, 763–773.
Peng, J. P.; Liu, P. J.; Chen, Y. T.; Guo, Z. H.; Liu, Y. H.; Yue, K. Templated synthesis of patterned gold nanoparticle assemblies for highly sensitive and reliable SERS substrates. Nano Res. 2023, 16, 5056–5064.
Su, M.; Song, Y. L. Printable Smart Materials and Devices: Strategies and Applications. Chem. Rev. 2022, 122, 5144–5164.
Zheng, Y. Y.; She, D. J.; Huang, H. H.; Lin, L.; Chen, S. H.; Lu, Y. P.; Liu, L.; Pang, Z. Q.; Yin, B. Versatile nanocomposite augments high-intensity focused ultrasound for high-efficacy sonodynamic therapy of glioma. Nano Res. 2022, 15, 9082–9091.
Li, Q.; Zhang, X. D.; Ben, S.; Zhao, Z. H.; Ning, Y. Z.; Liu, K. S.; Jiang, L. Bio-inspired superhydrophobic magnesium alloy surfaces with active anti-corrosion and self-healing properties. Nano Res. 2023, 16, 3312–3319.
Wallace, G. Q.; Read, S. T.; Mcrae, D. M.; Rosendahl, S. M.; Lagugné-labarthet, F. Exploiting anisotropy of plasmonic nanostructures with polarization modulation infrared linear dichroism microscopy (µPM-IRLD). Adv. Opt. Mater. 2018, 6, 1701336.
Bi, P.; Zhang, M. C.; Li, S.; Lu, H. J.; Wang, H. M.; Liang, X. P.; Liang, H. R.; Zhang, Y. Y. Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces. Nano Res. 2023, 16, 4093–4099.
Menard, E.; Meitl, M. A.; Sun, Y. G.; Park, J. U.; Shir, D. J. L.; Nam, Y. S.; Jeon, S.; Rogers, J. A. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 2007, 107, 1117–1160.
Wang, H. P.; Liu, Z. F.; Sun, Y. L.; Ping, X. F.; Xu, J. L.; Ding, Y. T.; Hu, H. W.; Xie, D.; Ren, T. L. Anisotropic electrical properties of aligned PtSe2 nanoribbon arrays grown by a pre-patterned selective selenization process. Nano Res. 2022, 15, 4668–4676.
del Campo, A.; Arzt, E. Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chem. Rev. 2008, 108, 911–945.
Wu, P. F.; You, T. T.; Ren, Q. Y.; Xi, H. Y.; Liu, Q. Q.; Qin, F. J.; Gu, H. F.; Wang, Y.; Yan, W. S.; Gao, Y. K. et al. Interface electronic engineering of molybdenum sulfide/MXene hybrids for highly efficient biomimetic sensors. Nano Res. 2023, 16, 1158–1164.
Li, X.; Sun, Y. P.; Li, L.; Su, X. X. Response of mesenchymal stem cells to surface topography of scaffolds and the underlying mechanisms. J. Mater. Chem. B 2023, 11, 2550–2567.
Bell, L. D.; Kaiser, W. J. Observation of interface band structure by ballistic-electron-emission microscopy. Phys. Rev. Lett. 1988, 61, 2368–2371.
Fang, Z. Q.; Lin, X. F.; Lin, Y. H.; Gao, J. M.; Gong, L.; Lin, R. J.; Pan, G. Y.; Wu, J. Y.; Lin, W. J.; Chen, X. D. et al. Self-erasable dynamic surface patterns via controllable elastic modulus boosting multi-encoded and tamper-proof information storage. Nano Res. 2023, 16, 634–644.
Kim, D. H.; Lee, H.; Lee, Y. K.; Nam, J. M.; Levchenko, A. Biomimetic nanopatterns as enabling tools for analysis and control of live cells. Adv. Mater. 2010, 22, 4551–4566.
Gattazzo, F.; Urciuolo, A.; Bonaldo, P. Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 2506–2519.
Harrison, R. G. The cultivation of tissues in extraneous media as a method of morpho-genetic study. Anat. Rec. 1912, 6, 181–193.
Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber, D. E. Geometric control of cell life and death. Science 1997, 276, 1425–1428.
Teixeira, A. I.; Abrams, G. A.; Bertics, P. J.; Murphy, C. J.; Nealey, P. F. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 2003, 116, 1881–1892.
Grevesse, T.; Versaevel, M.; Circelli, G.; Desprez, S.; Gabriele, S. A simple route to functionalize polyacrylamide hydrogels for the independent tuning of mechanotransduction cues. Lab Chip 2013, 13, 777–780.
Polacheck, W. J.; German, A. E.; Mammoto, A.; Ingber, D. E.; Kamm, R. D. Mechanotransduction of fluid stresses governs 3D cell migration. Proc. Natl. Acad. Sci. USA 2014, 111, 2447–2452.
Kothapalli, C. R.; van Veen, E.; de Valence, S.; Chung, S.; Zervantonakis, I. K.; Gertler, F. B.; Kamm, R. D. A high-throughput microfluidic assay to study neurite response to growth factor gradients. Lab Chip 2011, 11, 497–507.
Wu, J. D.; Mao, Z. W.; Han, L. L.; Zhao, Y. Z.; Xi, J. B.; Gao, C. Y. A density gradient of basic fibroblast growth factor guides directional migration of vascular smooth muscle cells. Colloids Surf. B: Biointerfaces 2014, 117, 290–295.
Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Large-scale synthesis of aligned carbon nanotubes. Science 1996, 274, 1701–1703.
Crooks, R. M.; Zhao, M. Q.; Sun, L.; Chechik, V.; Yeung, L. K. Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 2001, 34, 181–190.
Liu, N.; Sun, Q. C.; Yang, Z. S. et al. Wrinkled interfaces: taking advantage of anisotropic wrinkling to periodically pattern polymer surfaces. Adv.Sci. 2023, 10, 2207210.
Li, L.; Dong, J. C.; Geng, D. C.; Li, M. H.; Fu, W.; Ding, F.; Hu, W. P.; Yang, H. Y. Multi-stage anisotropic etching of two-dimensional heterostructures. Nano Res. 2022, 15, 4909–4915.
Wolf, M. P.; Salieb-Beugelaar, G.B.; Hunziker, P. PDMS with designer functionalities Properties, modifications strategies, and applications. Prog. Polym. Sci. 2018, 83, 97–134.
Bettinger, C. J.; Langer, R.; Borenstein, J. T. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem., Int. Ed. 2009, 48, 5406–5415.
Liddle, J. A.; Gallatin, G. M. Nanomanufacturing: A perspective. ACS Nano 2016, 10, 2995–3014.
Wang, Z. J.; Cao, D. W.; Xu, R.; Qu, S. C.; Wang, Z. G.; Lei, Y. Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently. Nano Energy 2016, 19, 328–362.
Chen, W. Q.; Shao, Y.; Li, X.; Zhao, G.; Fu, J. P. Nanotopographical surfaces for stem cell fate control: Engineering mechanobiology from the bottom. Nano Today 2014, 9, 759–784.
Revzin, A.; Tompkins, R. G.; Toner, M. Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir 2003, 19, 9855–9862.
Yamato, M.; Konno, C.; Utsumi, M.; Kikuchi, A.; Okano, T. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 2002, 23, 561–567.
Karp, J. M.; Yeo, Y.; Geng, W.; Cannizarro, C.; Yan, K.; Kohane, D. S.; Vunjak-Novakovic, G.; Langer, R. S.; Radisic, M. A photolithographic method to create cellular micropatterns. Biomaterials 2006, 27, 4755–4764.
Klein, F.; Striebel, T.; Fischer, J.; Jiang, Z. X.; Franz, C. M.; von Freymann, G.; Wegener, M.; Bastmeyer, M. Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv. Mater. 2010, 22, 868–871.
Xu, F.; Wu, J. H.; Wang, S. Q.; Durmus, N. G.; Gurkan, U. A.; Demirci, U. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 2011, 3, 034101.
Xu, R. C.; Mu, X. D.; Hu, Z. H.; Jia, C. Z.; Yang, Z. Y.; Yang, Z. L.; Fan, Y. P.; Wang, X. Y.; Wu, Y. F.; Lu, X. T. et al. Enhancing bioactivity and stability of polymer-based material-tissue interface through coupling multiscale interfacial interactions with atomic-thin TiO2 nanosheets. Nano Res. 2023, 16, 5247–5255.
Nie, Z. H.; Kumacheva, E. Patterning surfaces with functional polymers. Nat. Mater. 2008, 7, 277–290.
Yao, X.; Peng, R.; Ding, J. D. Cell-material interactions revealed via material techniques of surface patterning. Adv. Mater. 2013, 25, 5257–5286.
Kumar, A.; Whitesides, G. M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl. Phys. Lett. 1993, 63, 2002–2004.
Workman, R. K.; Manne, S. Molecular transfer and transport in noncovalent microcontact printing. Langmuir 2004, 20, 805–815.
Hui, C. Y.; Jagota, A.; Lin, Y. Y.; Kramer, E. J. Constraints on microcontact printing imposed by stamp deformation. Langmuir 2002, 18, 1394–1407.
Lee, J.; Abdeen, A. A.; Zhang, D.; Kilian, K. A. Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 2013, 34, 8140–8148.
Zheng, W. F.; Jiang, B.; Wang, D.; Zhang, W.; Wang, Z.; Jiang, X. Y. A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip 2012, 12, 3441–3450.
Théry, M.; Racine, V.; Pépin, A.; Piel, M.; Chen, Y.; Sibarita, J. B.; Bornens, M. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 2005, 7, 947–953.
Théry, M.; Racine, V.; Piel, M.; Pépin, A.; Dimitrov, A.; Chen, Y.; Sibarita, J. B.; Bornens, M. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. USA 2006, 103, 19771–19776.
Cutiongco, M. F. A.; Goh, S. H.; Aid-Launais, R.; Le Visage, C.; Low, H. Y.; Yim, E. K. F. Planar and tubular patterning of micro and Nano-topographies on poly(vinyl alcohol) hydrogel for improved endothelial cell responses. Biomaterials 2016, 84, 184–195.
Wang, X. L.; Hu, X. H.; Kawazoe, N.; Yang, Y. N.; Chen, G. P. Manipulating cell nanomechanics using micropatterns. Adv. Funct. Mater. 2016, 26, 7634–7643.
Choi, C. K.; Breckenridge, M. T.; Chen, C. S. Engineered materials and the cellular microenvironment: A strengthening interface between cell biology and bioengineering. Trends Cell Biol. 2010, 20, 705–714.
Liu, S. D.; Nie, Y. F.; Zhang, Q.; Zhu, Y. T.; Li, X.; Han, D. Adhesion anisotropy substrate with Janus micropillar arrays guides cell polarized migration and division cycle. Angew. Chem., Int. Ed. 2019, 58, 4308–4312.
Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 1995, 67, 3114–3116.
Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 1996, 272, 85–87.
Chou, S. Y.; Krauss, P. R.; Zhang, W.; Guo, L. J.; Zhuang, L. Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 1997, 15, 2897–2904.
Zhang, H.; Hou, R. X.; Xiao, P.; Xing, R. B.; Chen, T.; Han, Y. C.; Ren, P. G.; Fu, J. Single cell migration dynamics mediated by geometric confinement. Colloids Surf. B: Biointerfaces 2016, 145, 72–78.
Campanale, J. P.; Montell, D. J. Who's really in charge: Diverse follower cell behaviors in collective cell migration. Curr. Opin. Cell Biol. 2023, 81, 102160.
Hua, F.; Sun, Y. G.; Gaur, A.; Meitl, M. A.; Bilhaut, L.; Rotkina, L.; Wang, J. F.; Geil, P.; Shim, M.; Rogers, J. A. et al. Polymer imprint lithography with molecular-scale resolution. Nano Lett. 2004, 4, 2467–2471.
Hahmann, P.; Fortagne, O. 50 years of electron beam lithography: Contributions from Jena (Germany). Microelectron. Eng. 2009 , 86, 438–441.
Chen, Y. F. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015, 135, 57–72.
Lee, C. R.; Ok, J. G.; Jeong, M. Y. Nanopatterning on the cylindrical surface using an E-Beam pre-mapping algorithm. J. Micromech. Microeng. 2019, 29, 015004.
Ogi, H.; Iwagami, S.; Nagakubo, A.; Taniguchi, T.; Ono, T. Nano-plate biosensor array using ultrafast heat transport through proteins. Sens. Actuators B: Chem. 2019, 278, 15–20.
Zhang, G.; Wang, D. Y.; Möhwald, H. Ordered binary arrays of Au nanoparticles derived from colloidal lithography. Nano Lett. 2007, 7, 127–132.
Deckman, H. W.; Dunsmuir, J. H. Natural lithography. Appl. Phys. Lett. 1982, 41, 377–379.
Li, Y. F.; Zhang, J. H.; Zhu, S. J.; Dong, H. P.; Wang, Z. H.; Sun, Z. Q.; Guo, J. R.; Yang, B. Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings. J. Mater. Chem. 2009, 19, 1806–1810.
Choi, D. G.; Yu, H. K.; Jang, S. G.; Yang, S. M. Colloidal lithographic nanopatterning via reactive ion etching. J. Am. Chem. Soc. 2004, 126, 7019–7025.
Mayer, M.; Schnepf, M. J.; Koenig, T. A. et al. Colloidal Self-Assembly Concepts for Plasmonic Metasurfaces. Adv. Optical Mater. 2019, 7, 1800564.
Li, Y.; Koshizaki, N.; Cai, W. P. Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices. Coord. Chem. Rev. 2011, 255, 357–373.
Yang, S. K.; Lei, Y. Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. Nanoscale 2011, 3, 2768–2782.
Ye, X. Z.; Qi, L. M. Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications. Nano Today 2011, 6, 608–631.
Kuncicky, D. M.; Prevo, B. G.; Velev, O. D. Controlled assembly of SERS substrates templated by colloidal crystal films. J. Mater. Chem. 2006, 16, 1207–1211.
Yi, B. C.; Zhou, B. Y.; Dai, W. F.; Lu, X. W.; Liu, W. Soft nanofiber modified micropatterned substrates enhance native-like endothelium maturation via CXCR4/calcium-mediated actin cytoskeleton assembly. Nano Res. 2023, 16, 792–809.
Kahl, M.; Voges, E.; Kostrewa, S.; Viets, C.; Hill, W. Periodically structured metallic substrates for SERS. Sens. Actuators B: Chem. 1998, 51, 285–291.
Kim, S.; Marelli, B.; Brenckle, M. A.; Mitropoulos, A. N.; Gil, E. S.; Tsioris, K.; Tao, H.; Kaplan, D. L.; Omenetto, F. G. All-water-based electron-beam lithography using silk as a resist. Nat. Nanotechnol. 2014, 9, 306–310.
Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.
Wang, P.; Bao, S. Y.; Qiao, S. Q.; Li, C.; Jiang, Z.; Song, H.; Wang, Y. L.; Zhan, Q. Q.; Huang, L. Luminescent nanoparticle-arrays synthesized via polymer pen lithography. Nano Res. 2023, 16, 3125–3129.
Guarini, K. W.; Black, C. T.; Yeung, S. H. I. Optimization of diblock copolymer thin film self assembly. 3.0.CO;2-N">Adv. Mater. 2002, 14, 1290–1294.
Segalman, R. A.; Hexemer, A.; Hayward, R. C.; Kramer, E. J. Ordering and melting of block copolymer spherical domains in 2 and 3 dimensions. Macromolecules 2003, 36, 3272–3288.
Segalman, R. A.; Schaefer, K. E.; Fredrickson, G. H.; Kramer, E. J.; Magonov, S. Topographic templating of islands and holes in highly asymmetric block copolymer films. Macromolecules 2003, 36, 4498–4506.
Birnkrant, M. J.; Li, C. Y.; Natarajan, L. V.; Tondiglia, V. P.; Sutherland, R. L.; Lloyd, P. F.; Bunning, T. J. Layer-in-layer hierarchical nanostructures fabricated by combining holographic polymerization and block copolymer self-assembly. Nano Lett. 2007, 7, 3128–3133.
Yang, K.; Jung, H.; Lee, H. R.; Lee, J. S.; Kim, S. R.; Song, K. Y.; Cheong, E.; Bang, J.; Im, S. G.; Cho, S. W. Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. ACS Nano 2014, 8, 7809–7822.
Wang, X.; Li, S. Y.; Yan, C.; Liu, P.; Ding, J. D. Fabrication of RGD micro/nanopattern and corresponding study of stem cell differentiation. Nano Lett. 2015, 15, 1457–1467.
Russell, T. P.; Coulon, G.; Deline, V. R.; Miller, D. C. Characteristics of the surface-induced orientation for symmetric diblock PS/PMMA copolymers. Macromolecules 1989, 22, 4600–4606.
Fredrickson, G. H.; Liu, A. J.; Bates, F. S. Entropic corrections to the Flory-Huggins theory of polymer blends: Architectural and conformational effects. Macromolecules 1994, 27, 2503–2511.
Li, R. R.; Dapkus, P. D.; Thompson, M. E.; Jeong, W. G.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography. Appl. Phys. Lett. 2000, 76, 1689–1691.
Kim, H. C.; Jia, X.; Stafford, C. M.; Kim, D. H.; Mccarthy, T. J.; Tuominen, M.; Hawker, C. J.; Russell, T. P. A route to nanoscopic SiO2 posts via block copolymer templates. 3.0.CO;2-1">Adv. Mater. 2001, 13, 795–797.
Khor, H. L.; Kuan, Y.; Kukula, H.; Tamada, K.; Knoll, W.; Moeller, M.; Hutmacher, D. W. Response of cells on surface-induced nanopatterns: Fibroblasts and mesenchymal progenitor cells. Biomacromolecules 2007, 8, 1530–1540.
Li, D.; Xia, Y. Electrospinning of nanofibers: Reinventing the wheel. Adv. Mater. 2004, 16, 1151–1170.
Nie, Y. F.; Han, X. X.; Ao, Z.; Ning, S. W.; Li, X.; Han, D. Self-organizing gelatin-polycaprplactone materials with good fluid transmission can promote full-thickness skin regeneration. Mater. Chem. Front. 2021, 5, 7022–7031.
Aigner, T. B.; DeSimone, E.; Scheibel, T. Biomedical applications of recombinant silk-based materials. Adv. Mater. 2018, 30, 1704636.
Ramshaw, J. A. M. Biomedical applications of collagens. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2016, 104, 665–675.
Sofia, S.; Mccarthy, M. B.; Gronowicz, G.; Kaplan, D. L. Functionalized silk-based biomaterials for bone formation. 3.0.CO;2-7">J. Biomed. Mater. Res. 2001, 54, 139–148.
Li, Z. Q.; Liu, P.; Yang, T.; Sun, Y.; You, Q.; Li, J. L.; Wang, Z. L.; Han, B. Composite poly(L-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering. J. Biomater. Appl. 2016, 30, 1552–1565.
Lee, B. L. P.; Jeon, H.; Wang, A. J.; Yan, Z. Q.; Yu, J.; Grigoropoulos, C.; Li, S. Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. Acta Biomater. 2012, 8, 2648–2658.
Ku, S. H.; Park, C. B. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 2010, 31, 9431–9437.
Zhang, X. H.; Baughman, C. B.; Kaplan, D. L. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials 2008 , 29, 2217–2227.
Uttayarat, P.; Perets, A.; Li, M. Y.; Pimton, P.; Stachelek, S. J.; Alferiev, I.; Composto, R. J.; Levy, R. J.; Lelkes, P. I. Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomater. 2010, 6, 4229–4237.
Li, X. K.; Chang, J . Preparation of bone-like apatitecollagen nanocomposites by a biomimetic process with phosphorylated collagen. J. Biomed. Mater Res. 2008, 85A, 293–300.
Schneider, O. D.; Weber, F.; Brunner, T. J.; Loher, S.; Ehrbar, M.; Schmidlin, P. R.; Stark, W. J. In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects. Acta Biomater. 2009 , 5, 1775–1784.
Vargas, E. A. T.; do Vale Baracho, N. C.; de Brito, J.; de Queiroz, A. A. A. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater. 2010, 6, 1069–1078.
Iqbal, M. I.; Shi, S.; Kumar, G. M. S.; Hu, J. L. Evaporative/radiative electrospun membrane for personal cooling. Nano Res. 2023, 16, 2563–2571.
Xu, H.; Li, H. Y.; Ke, Q. F.; Chang, J. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering. ACS Appl. Mater. Interfaces 2015, 7, 8706–8718.
Zhang, D. Y.; Qiu, D.; Gibson, M. A.; Zheng, Y. F.; Fraser, H. L.; Stjohn, D. H.; Easton, M. A. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature 2019, 576, 91–95.
Zastrow, M. 3D printing gets bigger, faster and stronger. Nature 2020 , 578, 20–23.
Darkes-Burkey, C.; Shepherd, R. F. High-resolution 3D printing in seconds. Nature 2020, 588, 594–595.
Dong, Z. Q.; Cui, H. J.; Zhang, H. D.; Wang, F.; Zhan, X.; Mayer, F.; Nestler, B.; Wegener, M.; Levkin, P. A. 3D printing of inherently nanoporous polymers via polymerization-induced phase separation. Nat. Commun. 2021 , 12, 247.
Takahashi, K.; Miyashita, I.; Ejima, H.; Watanabe, T.; Ide, K.; Takahashi, M. Calculation of sudden three-phase short-circuit current of turbine generators by 3D magnetic field analysis. Electr. Eng. Jpn. 2005, 153, 54–62.
Kang, H. W.; Lee, S. J.; Ko, I. K.; Kengla, C.; Yoo, J. J.; Atala, A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 2016, 34, 312–319.
Huang, J. G.; Ware, H. O. T.; Hai, R. H.; Shao, G. B.; Sun, C. Conformal geometry and multimaterial additive manufacturing through freeform transformation of building layers. Adv. Mater. 2021, 33, 2005672.
Saadi, M. A. S. R.; Maguire, A.; Pottackal, N. T.; Thakur, M. S. H.; Ikram, M. M.; Hart, A. J.; Ajayan, P. M.; Rahman, M. M. Direct ink writing: A 3D printing technology for diverse materials. Adv. Mater. 2022, 34, 2108855.
Wallin, T. J.; Pikul, J.; Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 2018, 3, 84–100.
Farahani, R. D.; Dubé, M.; Therriault, D. Three-dimensional printing of multifunctional nanocomposites: Manufacturing techniques and applications. Adv. Mater. 2016, 28, 5794–5821.
Zhang, F.; Li, Z. A.; Xu, M. J.; Wang, S. Y.; Li, N.; Yang, J. Q. A review of 3D printed porous ceramics. J. Eur. Ceram. Soc. 2022, 42, 3351–3373.
Su, R. Y.; Chen, J. Y.; Zhang, X. Q.; Wang, W. Q.; Li, Y.; He, R. J.; Fang, D. N. 3D-printed micro/Nano-scaled mechanical metamaterials: Fundamentals, technologies, progress, applications, and challenges. Small 2023 , 19, 2206391.
Lin, S. Y.; Fleming, J. G.; Hetherington, D. L.; Smith, B. K.; Biswas, R.; Ho, K. M.; Sigalas, M. M.; Zubrzycki, W.; Kurtz, S. R.; Bur, J. A three-dimensional photonic crystal operating at infrared wavelengths. Nature 1998, 394, 251–253.
Zipfel, W. R.; Williams, R. M.; Webb, W. W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol. 2003, 21, 1369–1377.
Zhang, D.; Chang, J. Patterning of electrospun fibers using electroconductive templates. Adv. Mater. 2007, 19, 3664–3667.
Mitragotri, S.; Lahann, J. Physical approaches to biomaterial design. Nat. Mater. 2009, 8, 15–23.
Bet, M. R.; Goissis, G.; Vargas, S.; Selistre-De-araujo, H. S. Cell adhesion and cytotoxicity studies over polyanionic collagen surfaces with variable negative charge and wettability. Biomaterials 2003, 24, 131–137.
Hazeltine, L. B.; Selekman, J. A.; Palecek, S. P. Engineering the human pluripotent stem cell microenvironment to direct cell fate. Biotechnol. Adv. 2013, 31, 1002–1019.
Peng, R.; Yao, X.; Ding, J. D. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials 2011, 32, 8048–8057.
Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689.
Kilian, K. A.; Bugarija, B.; Lahn, B. T.; Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 2010, 107, 4872–4877.
Moore, S. W.; Roca-Cusachs, P.; Sheetz, M. P. Stretchy proteins on stretchy substrates: The important elements of integrin-mediated rigidity sensing. Dev. Cell 2010, 19, 194–206.
Lai, Y. X.; Xie, C.; Zhang, Z.; Lu, W. Y.; Ding, J. D. Design and synthesis of a potent peptide containing both specific and non-specific cell-adhesion motifs. Biomaterials 2010, 31, 4809–4817.
Yan, C.; Sun, J. G.; Ding, J. D. Critical areas of cell adhesion on micropatterned surface. Biomaterials 2011, 32, 3931–3938.
Kim, T. H.; Shah, S.; Yang, L. T.; Yin, P. T.; Hossain, M. K.; Conley, B.; Choi, J. W.; Lee, K. B. Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano 2015, 9, 3780–3790.
Gentile, F.; Tirinato, L.; Battista, E.; Causa, F.; Liberale, C.; Di Fabrizio, E. M.; Decuzzi, P. Cells preferentially grow on rough substrates. Biomaterials 2010, 31, 7205–7212.
van Wachem, P. B.; Hogt, A. H.; Beugeling, T.; Feijen, J.; Bantjes, A.; Detmers, J. P.; van Aken, W. G. Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials 1987, 8, 323–328.