AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rapid and sensitive detection of urinary KIM-1 using fully printed photonic crystal microarrays

Yang Liu1,§Xuwei He1,2,§Zewei Lian3,§Qian Guo4Jimei Chi3Xiaoxue Lin2Liyue Zhang2Zheng Liu2Yingyuan Liu2Meng Su3Keyu Wang5( )Qiangguo Ao1( )Qingli Cheng1( )
Department of Nephrology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Centre for Geriatric Diseases, Beijing 100853, China
Chinese PLA Medical School, Beijing 100853, China
Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
Department of Rheumatology and Immunology, Peking University International Hospital, Beijing 102206, China
Department of Clinical Laboratory, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Centre for Geriatric Diseases, Beijing 100853, China

§ Yang Liu, Xuwei He, and Zewei Lian contributed equally to this work.

Show Author Information

Graphical Abstract

Acute kidney injury (AKI) is a serious disease prevalent in all clinical departments. A rapid quantitative measurement of urinary kidney injury molecule 1 (KIM-1) based on photonic crystal (PC) microarrays and portable testing devices can help to diagnose AKI early, prevent its further progression to chronic kidney disease, save lives, and maintain health.

Abstract

Urinary kidney injury molecule 1 (uKIM-1) serves as a reliable marker for the early diagnosis of acute kidney injury (AKI). The rapid and facile detection of changes in uKIM-1 is essential for early AKI diagnosis, ultimately improving the prognosis of patients. In this study, we developed a fully printed photonic crystal-integrated microarray with photonic crystal-enhanced fluorescence properties, which can detect uKIM-1 levels at the point-of-care. We confirmed its efficacy in the early diagnosis of AKI using clinical urine specimens. Direct quantitative detection of uKIM-1 was achieved within 10 min. The lowest limit of detection is 8.75 pg·mL−1 with an accuracy of 94.2%. The diagnostic efficacy was validated using 86 clinical urine samples, highlighting the high sensitivity and stability of the photonic crystal microarray. Consequently, a facile and reliable immunoassay was designed and prepared for the rapid quantitative detection of uKIM-1, which is crucial for the early identification and convenient detection of AKI in hospital or community settings. Rapid, convenient, cost-effective, and long-term monitoring of changes in uKIM-1 levels can assist clinicians in making timely adjustments to treatment regimens, preventing the transition from AKI to chronic kidney disease (CKD), improving the quality of life of patients with AKI, and reducing healthcare costs. It highlights the advantages of utilizing urine samples as a noninvasive and easily accessible medium for early detection and monitoring of kidney-related conditions.

Electronic Supplementary Material

Download File(s)
12274_2023_6335_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Geng, J. W.; Qiu, Y. X.; Qin, Z.; Su, B. H. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: A systematic review and Bayesian meta-analysis. J. Transl. Med. 2021, 19, 105.

[2]

Zhou, G. H.; Zhao, W. C.; Zhang, C. Y.; Gao, X. Y.; Cheng, Q. L.; Gao, F. P. Manganese carbonyl-loaded hollow mesoporous silica nanoparticles coated with neutrophil membranes for acute kidney injury therapy. ACS Appl. Nano Mater. 2022, 5, 4130–4145.

[3]

Vijayan, A. Tackling AKI: Prevention, timing of dialysis and follow-up. Nat. Rev. Nephrol. 2021, 17, 87–88.

[4]

Jana, S.; Mitra, P.; Roy, S. Proficient novel biomarkers guide early detection of acute kidney injury: A review. Diseases 2022, 11, 8.

[5]

Kister, T. S.; Schmidt, M.; Heuft, L.; Federbusch, M.; Haase, M.; Kaiser, T. Laboratory diagnostic of acute kidney injury and its progression: Risk of underdiagnosis in female and elderly patients. J. Clin. Med. 2023, 12, 1092.

[6]

Wu, L. J.; Li, Y. Q.; Zhang, X. Z.; Chen, X. H.; Li, D. Y.; Nie, S.; Li, X.; Bellou, A. Prediction differences and implications of acute kidney injury with and without urine output criteria in adult critically ill patients. Nephrol. Dial. Transplant. 2023, 38, 2368–2378.

[7]

Mizdrak, M.; Kumrić, M.; Kurir, T. T.; Božić, J. Emerging biomarkers for early detection of chronic kidney disease. J. Pers. Med. 2022, 12, 548.

[8]

Pasala, S.; Carmody, J. B. How to use… serum creatinine, cystatin C and GFR. Arch. Dis. Child. Educ. Pract. Ed. 2017, 102, 37–43.

[9]

Liu, K. Z.; Tian, G. H.; Ko, A. C. T.; Geissler, M.; Brassard, D.; Veres, T. Detection of renal biomarkers in chronic kidney disease using microfluidics: Progress, challenges and opportunities. Biomed. Microdevices 2020, 22, 29.

[10]

Sampaio de Souza Garms, D.; Cardoso Eid, K. Z.; Burdmann, E. A.; Marçal, L. J.; Antonângelo, L.; Dos Santos, A.; Ponce, D. The role of urinary biomarkers as diagnostic and prognostic predictors of acute kidney injury associated with vancomycin. Front. Pharmacol. 2021, 12, 705636.

[11]

Neuen, B. L.; Kennedy, S. Biomarkers and personalised medicine in paediatric kidney disease. Lancet Child Adolesc. Health 2023, 7, 369–371.

[12]

Fazel, M.; Sarveazad, A.; Mohamed Ali, K.; Yousefifard, M.; Hosseini, M. Accuracy of urine kidney injury molecule-1 in predicting acute kidney injury in children; a systematic review and meta-analysis. Arch. Acad. Emerg. Med. 2020, 8, e44.

[13]

Zou, C. C.; Wang, C. T.; Lu, L. Advances in the study of subclinical AKI biomarkers. Front. Physiol. 2022, 13, 960059.

[14]

Zheng, S. X.; Zhou, X. M.; Qin, Y.; Yu, X. M.; Chen, L. L.; Liu, X. B.; Wang, Y. G.; Gong, J. G.; Shen, S. J.; Huang, B. Establishment of a time-resolved immunoassay for acute kidney injury based on the detection of Kim-1. J. Clin. Lab. Anal. 2022, 36, e24603.

[15]

Kot, K.; Kupnicka, P.; Witulska, O.; Czepan, A.; Łanocha-Arendarczyk, N. A.; Łanocha, A. A.; Kosik-Bogacka, D. I. Potential biomarkers in diagnosis of renal acanthamoebiasis. Int. J. Mol. Sci. 2021, 22, 6583.

[16]

Yin, Z. G.; Liu, C. J.; Yi, Y. J.; Wu, H. P.; Fu, X. H.; Yan, Y. R. A label-free electrochemical immunosensor based on PdPtCu@BP bilayer nanosheets for point-of-care kidney injury molecule-1 testing. J. Electroanal. Chem. 2022, 917, 116420.

[17]

Wu, C.; Dougan, T. J.; Walt, D. R. High-throughput, high-multiplex digital protein detection with attomolar sensitivity. ACS Nano 2022, 16, 1025–1035.

[18]

Chi, J. M.; Wu, Y. B.; Qin, F. F.; Su, M.; Cheng, N.; Zhang, J. B.; Li, C. B.; Lian, Z. W.; Yang, X.; Cheng, L. J. et al. All-printed point-of-care immunosensing biochip for one drop blood diagnostics. Lab Chip 2022, 22, 3008–3014.

[19]

Chen, H. X.; Luo, Z. Q.; Lin, X.; Zhu, Y. J.; Zhao, Y. J. Sensors-integrated organ-on-a-chip for biomedical applications. Nano Res 2023, 16, 10072–10099.

[20]

Fenzl, C.; Hirsch, T.; Wolfbeis, O. S. Photonic crystals for chemical sensing and biosensing. Angew. Chem., Int. Ed. 2014, 53, 3318–3335.

[21]

Su, M.; Song, Y. L. Printable smart materials and devices: Strategies and applications. Chem. Rev. 2022, 122, 5144–5164.

[22]

Ostermann, M.; Bellomo, R.; Burdmann, E. A.; Doi, K.; Endre, Z. H.; Goldstein, S. L.; Kane-Gill, S. L.; Liu, K. D.; Prowle, J. R.; Shaw, A. D. et al. Controversies in acute kidney injury: Conclusions from a kidney disease: Improving Global Outcomes (KDIGO) conference. Kidney Int. 2020, 98, 294–309

[23]

Kellum, J. A.; Norbert Lameire for the KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204.

[24]

de Boer, I. H.; Khunti, K.; Sadusky, T.; Tuttle, K. R.; Neumiller, J. J.; Rhee, C. M.; Rosas, S. E.; Rossing, P.; Bakris, G. Diabetes management in chronic kidney disease: A consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2022, 102, 974–989.

[25]

Chen, T. K.; Knicely, D. H.; Grams, M. E. Chronic kidney disease diagnosis and management: A review. Jama 2019, 322, 1294–1304.

[26]

Lian, Z. W.; Wu, T. Q.; Wang, H. D.; Chi, J. M.; Cheng, L. J.; Xie, D. X.; Pan, X. Y.; Hu, Y. M.; Tan, Z. Y.; Chen, S. S. et al. At-home COVID-19 rapid antigen test down to 0.03 pg·mL−1 of nucleocapsid protein. Small 2023, 19, 2301162.

[27]

Chi, J. M.; Su, M.; Xue, B. J.; Cheng, L. J.; Lian, Z. W.; Yun, Y.; Yang, X.; Wang, X.; Xie, H. F.; Wang, H. D. et al. Fast and sensitive detection of protein markers using an all-printing photonic crystal microarray via fingertip blood. ACS Sens 2023, 8, 1742–1749.

[28]

Westhoff, J. H.; Fichtner, A.; Waldherr, S.; Pagonas, N.; Seibert, F. S.; Babel, N.; Tönshoff, B.; Bauer, F.; Westhoff, T. H. Urinary biomarkers for the differentiation of prerenal and intrinsic pediatric acute kidney injury. Pediatr. Nephrol. 2016, 31, 2353–2363.

[29]

Priyadarshini, G.; Rajappa, M. Predictive markers in chronic kidney disease. Clin. Chim. Acta 2022, 535, 180–186.

[30]

Liu, C.; Debnath, N.; Mosoyan, G.; Chauhan, K.; Vasquez-Rios, G.; Soudant, C.; Menez, S.; Parikh, C. R.; Coca, S. G. Systematic review and meta-analysis of plasma and urine biomarkers for CKD outcomes. J. Am. Soc. Nephrol. 2022, 33, 1657–1672.

[31]
Sun, C. F.; Wang, T. Organic thin-film transistors and related devices in life and health monitoring. Nano Res., in press, https://doi.org/10.1007/s12274-023-5606-1.
Nano Research
Pages 4329-4337
Cite this article:
Liu Y, He X, Lian Z, et al. Rapid and sensitive detection of urinary KIM-1 using fully printed photonic crystal microarrays. Nano Research, 2024, 17(5): 4329-4337. https://doi.org/10.1007/s12274-023-6335-1
Topics:

582

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 September 2023
Revised: 08 November 2023
Accepted: 13 November 2023
Published: 04 December 2023
© Tsinghua University Press 2023
Return