Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Artificial optical microfingerprints, known as physically unclonable functions (PUFs) offer a groundbreaking approach for anti-counterfeiting. However, these PUFs artificial optical microfingerprints suffer from a limited number of challenge-response pairs, making them vulnerable to machine learning (ML) attacks when additional error-correcting units are introduced. This study presents a pioneering demonstration of artificial optical microfingerprints that combine the advantages of PUFs, a large encoding capacity algorithm, and reliable deep learning authentication against ML attacks. Our approach utilizes the triple-mode PUFs, incorporating bright-field, multicolor fluorescence wrinkles, and the topography of surface enhanced Raman scattering in the mechanical and optical layers. Notably, the quaternary encoding of these PUFs artificial microfingerprints allows for an encoding capacity of 6.43 × 1024082 and achieves 100% deep learning recognition accuracy. Furthermore, the PUFs artificial optical microfingerprints exhibit high resilience against ML attacks, facilitated by generative adversarial networks (GAN) (with mean prediction accuracy of ~ 85.0%). The results of this study highlight the potential of utilizing up to three PUFs in conjunction with a GAN training system, paving the way for achieving encoded information that remains resilient to ML attacks.
Kim, M. S.; Lee, G. J.; Leem, G. W.; Choi, S.; Kim, Y. L.; Song, Y. S. Raman tags for physically unclonable anticounterfeiting labels. Nat. Commun. 2022, 13, 247
MacKenzie, L. E.; Pal, R. Circularly polarized lanthanide luminescence for advanced security inks. Nat. Rev. Chem. 2021, 5, 109–124.
Ma, T. J.; Li, T. T.; Zhou, L. W.; Ma, X. D.; Yin, J.; Jiang, X. S. Dynamic wrinkling pattern exhibiting tunable fluorescence for anticounterfeiting applications. Nat. Commun. 2020, 11, 1811.
Fang, Z. Q.; Lin, X. F.; Lin, Y. H.; Gao, J. M.; Gong, L.; Lin, R. J.; Pan, G. Y.; Wu, J. Y.; Lin, W. J.; Chen, X. D. et al. Self-erasable dynamic surface patterns via controllable elastic modulus boosting multi-encoded and tamper-proof information storage. Nano Res. 2023, 16, 634.
Jiang, X.; Wu, M. L.; Zhang, L.; Wang, J. Y.; Cui, M. Y.; Wang, J. H.; Pang, X. K.; Song, B.; He, Y. Multi-functional hydrogels simultaneously featuring strong fluorescence, ultralong phosphorescence, and excellent self-healing properties and their use for advanced anti-counterfeiting. Anal. Chem. 2022, 94, 7264–7271.
Wang, Z. H.; Gao, L.; Zheng, Y.; Zhu, Y. Y.; Zheng, Y. F.; Zheng, X.; Wang, C.; Li, Y. B.; Zhao, Y. L.; Yang, C. L. Four-in-one stimulus-responsive long-lived luminescent systems based on pyrene-doped amorphous polymers. Angew. Chem., Int. Ed. 2022, 61, e202203254.
Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M. Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: Recent advances and future challenges. ACS Nano 2020, 14, 14417–14492.
Kim, I.; Jang, J.; Kim, G.; Lee, J.; Badloe, T.; Mun, J.; Rho, J. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun. 2021, 12, 3614.
Pan, T.; Liu, S. H.; Zhang, L. T.; Xie, W. F.; Yu, C. J. A flexible, multifunctional, optoelectronic anticounterfeiting device from high-performance organic light-emitting paper. Light Sci. Appl. 2022, 11, 59.
Lu, Y. F.; Cheng, H. R.; Li, G. C.; Han, F.; Jiang, C.; Lo, T. W.; Lei, D. Y.; Francis, P. S.; Zheng, Y. H. Dynamic cryptography through plasmon-enhanced fluorescence blinking. Adv. Funct. Mater. 2022, 32, 2201372.
Gao, Y. S.; AI-Salami, S. F.; Abbott, D. Physical unclonable functions. Nat. Electron. 2020, 3, 81–91.
Kim, J. H.; Jeon, S.; In, J. H.; Nam, S.; Jin, H. M.; Han, K. H.; Yang, G. G.; Choi, H. J.; Shin , K. M.; Kim , J. et al. Nanoscale physical unclonable function labels based on block copolymer self-assembly. Nat. Electron. 2022, 5, 433–442.
Xie, M. X.; Lin, G. J.; Ge, D. T.; Yang, L. L.; Zhang, L. Z.; Yin, J.; Jiang, X. S. Pattern memory surface (PMS) with dynamic wrinkles for unclonable anticounterfeiting. ACS Mater. Lett. 2019, 1, 77–82.
Hu, Y. W.; Zhang, T. P.; Wang, C. F.; Liu, K. K.; Sun, Y.; Li, L.; Lv, C. F.; Liang, Y. C.; Jiao, F. H.; Zhao, W. B. et al. Flexible and biocompatible physical unclonable function anti-counterfeiting label. Adv. Funct. Mater. 2021, 31, 2102108.
Huang, S.; Qiu, R. Y.; Fang, Z. F.; Min, K.; van Beek, T. A.; Ma, M.; Chen, B.; Zuilhof, H.; Salentijn, G. I. Semiquantitative screening of THC analogues by silica gel TLC with an Ag(I) retention zone and chromogenic smartphone detection. Anal. Chem. 2022, 94, 13710–13718.
Ding, L. J.; Wang, X. D. Luminescent oxygen-sensitive ink to produce highly secured anticounterfeiting labels by inkjet printing. J. Am. Chem. Soc. 2020, 142, 13558–13564.
Jin, J. B.; Jiang, H.; Yang, Q. Q.; Tang, L. L.; Tao, Y.; Li, Y. Y.; Chen, R. F.; Zheng, C.; Fan, Q. L.; Zhang, K. Y. et al. Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow. Nat. Commun. 2020, 11, 842.
Deng, Z. L.; Shi, T.; Krasnok, A.; Li, X. P.; Alù, A. Observation of localized magnetic plasmon skyrmions. Nat. Commun. 2022, 13, 8.
Xie, Y.; Song, Y. P.; Sun, G. T.; Hu, P. F.; Bednarkiewicz, A.; Sun, L. N. Lanthanide-doped heterostructured nanocomposites toward advanced optical anti-counterfeiting and information storage. Light Sci. Appl. 2022, 11, 150.
Wang, J. H.; Song, B.; Tang, J. L.; Hu, G. Y.; Wang, J. Y.; Cui, M. Y.; He, Y. Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Res. 2020, 13, 1614–1619.
Chen, Q. P.; Huang, X. J.; Yang, D. D.; Le, Y. K.; Pan, Q. W.; Li, M. J.; Zhang, H.; Kang, J.; Xiao, X. D.; Qiu, J. R. et al. Three-dimensional laser writing aligned perovskite quantum dots in glass for polarization-sensitive anti-counterfeiting. Adv. Opt. Mater. 2023, 11, 2300090.
Liao, M. H.; Zheng, S. S.; Pan, S. X.; Lu, D. J.; He, W. Q.; Situ, G. H.; Peng, X. Deep-learning-based ciphertext-only attack on optical double random phase encryption. Opto-Electron. Adv. 2021, 4, 200016.
Guo, Y. M.; Zhong, L. B.; Min, L.; Wang, J. Y.; Wu, Y.; Chen, K. L.; Wei, K.; Rao, C. H. Adaptive optics based on machine learning: A review. Opto-Electron. Adv. 2022, 5, 200082.
Zhou, R. R.; Cheng, C. A.; Wang, X. Y.; Nie, K.; Wu, J.; Wu, M. Y.; Duan, X. Q.; Hu, Z. Y.; Huq, I. U.; Wang, H. et al. Metal halide perovskite nanocrystals with enhanced photoluminescence and stability toward anti-counterfeiting high-performance flexible fibers. Nano Res. 2023, 16, 3542–3551.
Dodda, A.; Radhakrishnan, S. S.; Schranghamer, T. F.; Buzzell1, D.; Sengupta, P.; Das, S. Graphene-based physically unclonable functions that are reconfigurable and resilient to machine learning attacks. Nat. Electron. 2021, 4, 364–374.
Kayaci, N.; Ozdemir, R.; Kalay, M.; Kiremitler, N. B.; Usta, H.; Onses, M. S. Organic light-emitting physically unclonable functions. Adv. Funct. Mater. 2022, 32, 2108675.
Thomas, H.; Pastoetter, D. L.; Gmelch, M.; Achenbach, T.; Schlögl, A.; Louis, M.; Feng, X. L.; Reineke, S. Aromatic phosphonates: A novel group of emitters showing blue ultralong room temperature phosphorescence. Adv. Mater. 2020, 32, 2000880.
Schranghamer, T. F.; Oberoi, A.; Das, S. Graphene memristive synapses for high precision neuromorphic computing. Nat. Commun. 2020, 11, 5474
Wang, H. Y.; Zhou, Y. F.; Jiang, X. X.; Sun, B.; Zhu, Y.; Wang, H.; Su, Y. Y.; He, Y. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Angew. Chem., Int. Ed. 2015, 54, 5132–5136.
Yang, S.; Khare, K.; Lin, P. C. Harnessing surface wrinkle patterns in soft matter. Adv. Funct. Mater. 2010, 20, 2550–2564.
Stafford, C. M.; Harrison, C.; Beers, K. L.; Karim, A.; Amis, E. J.; VanLandingham, M. R.; Kim, H. C.; Volksen, W.; Miller, R. D.; Simonyi, E. E. A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 2004, 3, 545–550.
Lin, P. C.; Yang, S. Spontaneous formation of one-dimensional ripples in transit to highly ordered two-dimensional herringbone structures through sequential and unequal biaxial mechanical stretching. Appl. Phys. Lett. 2007, 90, 241903.
Wan, C.; Jones, D. T. Protein function prediction is improved by creating synthetic feature samples with generative adversarial networks. Nat. Mach. Intell. 2020, 2, 540–550.
Bae, H. J.; Bae, S.; Park, C.; Han, S.; Kim, J.; Kim, L. N.; Kim, K.; Song, S. H.; Park, W.; Kwon, S. Biomimetic microfingerprints for anti-counterfeiting strategies. Adv. Mater. 2015, 27, 2083–2089.
Yin, J.; Boyce, M. C. Unique wrinkles as identity tags. Nature 2015, 520, 164–165.
Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212.
Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393, 146–149.
Chung, J. Y.; Nolte, A. J.; Stafford, C. M. Surface wrinkling: A versatile platform for measuring thin-film properties. Adv. Mater. 2011, 23, 349–368.
Wang, J. Y.; Zhang, Q.; Chen, R. Z.; Li, J.; Wang, J. H.; Hu, G. Y.; Cui, M. Y.; Jiang, X.; Song, B.; He, Y. Triple-layer unclonable anti-counterfeiting enabled by huge-encoding capacity algorithm and artificial intelligence authentication. Nano Today 2021, 41, 101324.
Kench, S.; Cooper, S. J. Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion. Nat. Mach. Intell. 2021, 3, 299–305.