AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Artificial optical microfingerprints for advanced anti-counterfeiting

Xueke Pang1,§Qiang Zhang2,§Jingyang Wang1Xin Jiang1Menglin Wu1Mingyue Cui1Zhixia Feng1Wenxin Xu1Bin Song1( )Yao He1( )
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
School of Sensing Science and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

§ Xueke Pang and Qiang Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

We present the artificial optical microfingerprints with physically unclonable functions, huge-encoding capacity algorithm, and reliable deep learning authentication for advanced anti-counterfeiting. Importantly, based on generative adversarial networks, the artificial optical microfingerprints can be highly resilient to machine learning attacks.

Abstract

Artificial optical microfingerprints, known as physically unclonable functions (PUFs) offer a groundbreaking approach for anti-counterfeiting. However, these PUFs artificial optical microfingerprints suffer from a limited number of challenge-response pairs, making them vulnerable to machine learning (ML) attacks when additional error-correcting units are introduced. This study presents a pioneering demonstration of artificial optical microfingerprints that combine the advantages of PUFs, a large encoding capacity algorithm, and reliable deep learning authentication against ML attacks. Our approach utilizes the triple-mode PUFs, incorporating bright-field, multicolor fluorescence wrinkles, and the topography of surface enhanced Raman scattering in the mechanical and optical layers. Notably, the quaternary encoding of these PUFs artificial microfingerprints allows for an encoding capacity of 6.43 × 1024082 and achieves 100% deep learning recognition accuracy. Furthermore, the PUFs artificial optical microfingerprints exhibit high resilience against ML attacks, facilitated by generative adversarial networks (GAN) (with mean prediction accuracy of ~ 85.0%). The results of this study highlight the potential of utilizing up to three PUFs in conjunction with a GAN training system, paving the way for achieving encoded information that remains resilient to ML attacks.

Electronic Supplementary Material

Download File(s)
12274_2023_6337_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Kim, M. S.; Lee, G. J.; Leem, G. W.; Choi, S.; Kim, Y. L.; Song, Y. S. Raman tags for physically unclonable anticounterfeiting labels. Nat. Commun. 2022, 13, 247

[2]

MacKenzie, L. E.; Pal, R. Circularly polarized lanthanide luminescence for advanced security inks. Nat. Rev. Chem. 2021, 5, 109–124.

[3]

Ma, T. J.; Li, T. T.; Zhou, L. W.; Ma, X. D.; Yin, J.; Jiang, X. S. Dynamic wrinkling pattern exhibiting tunable fluorescence for anticounterfeiting applications. Nat. Commun. 2020, 11, 1811.

[4]

Fang, Z. Q.; Lin, X. F.; Lin, Y. H.; Gao, J. M.; Gong, L.; Lin, R. J.; Pan, G. Y.; Wu, J. Y.; Lin, W. J.; Chen, X. D. et al. Self-erasable dynamic surface patterns via controllable elastic modulus boosting multi-encoded and tamper-proof information storage. Nano Res. 2023, 16, 634.

[5]

Jiang, X.; Wu, M. L.; Zhang, L.; Wang, J. Y.; Cui, M. Y.; Wang, J. H.; Pang, X. K.; Song, B.; He, Y. Multi-functional hydrogels simultaneously featuring strong fluorescence, ultralong phosphorescence, and excellent self-healing properties and their use for advanced anti-counterfeiting. Anal. Chem. 2022, 94, 7264–7271.

[6]

Wang, Z. H.; Gao, L.; Zheng, Y.; Zhu, Y. Y.; Zheng, Y. F.; Zheng, X.; Wang, C.; Li, Y. B.; Zhao, Y. L.; Yang, C. L. Four-in-one stimulus-responsive long-lived luminescent systems based on pyrene-doped amorphous polymers. Angew. Chem., Int. Ed. 2022, 61, e202203254.

[7]

Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M. Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: Recent advances and future challenges. ACS Nano 2020, 14, 14417–14492.

[8]

Kim, I.; Jang, J.; Kim, G.; Lee, J.; Badloe, T.; Mun, J.; Rho, J. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun. 2021, 12, 3614.

[9]

Pan, T.; Liu, S. H.; Zhang, L. T.; Xie, W. F.; Yu, C. J. A flexible, multifunctional, optoelectronic anticounterfeiting device from high-performance organic light-emitting paper. Light Sci. Appl. 2022, 11, 59.

[10]

Lu, Y. F.; Cheng, H. R.; Li, G. C.; Han, F.; Jiang, C.; Lo, T. W.; Lei, D. Y.; Francis, P. S.; Zheng, Y. H. Dynamic cryptography through plasmon-enhanced fluorescence blinking. Adv. Funct. Mater. 2022, 32, 2201372.

[11]

Gao, Y. S.; AI-Salami, S. F.; Abbott, D. Physical unclonable functions. Nat. Electron. 2020, 3, 81–91.

[12]

Kim, J. H.; Jeon, S.; In, J. H.; Nam, S.; Jin, H. M.; Han, K. H.; Yang, G. G.; Choi, H. J.; Shin , K. M.; Kim , J. et al. Nanoscale physical unclonable function labels based on block copolymer self-assembly. Nat. Electron. 2022, 5, 433–442.

[13]

Xie, M. X.; Lin, G. J.; Ge, D. T.; Yang, L. L.; Zhang, L. Z.; Yin, J.; Jiang, X. S. Pattern memory surface (PMS) with dynamic wrinkles for unclonable anticounterfeiting. ACS Mater. Lett. 2019, 1, 77–82.

[14]

Hu, Y. W.; Zhang, T. P.; Wang, C. F.; Liu, K. K.; Sun, Y.; Li, L.; Lv, C. F.; Liang, Y. C.; Jiao, F. H.; Zhao, W. B. et al. Flexible and biocompatible physical unclonable function anti-counterfeiting label. Adv. Funct. Mater. 2021, 31, 2102108.

[15]

Huang, S.; Qiu, R. Y.; Fang, Z. F.; Min, K.; van Beek, T. A.; Ma, M.; Chen, B.; Zuilhof, H.; Salentijn, G. I. Semiquantitative screening of THC analogues by silica gel TLC with an Ag(I) retention zone and chromogenic smartphone detection. Anal. Chem. 2022, 94, 13710–13718.

[16]

Ding, L. J.; Wang, X. D. Luminescent oxygen-sensitive ink to produce highly secured anticounterfeiting labels by inkjet printing. J. Am. Chem. Soc. 2020, 142, 13558–13564.

[17]

Jin, J. B.; Jiang, H.; Yang, Q. Q.; Tang, L. L.; Tao, Y.; Li, Y. Y.; Chen, R. F.; Zheng, C.; Fan, Q. L.; Zhang, K. Y. et al. Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow. Nat. Commun. 2020, 11, 842.

[18]

Deng, Z. L.; Shi, T.; Krasnok, A.; Li, X. P.; Alù, A. Observation of localized magnetic plasmon skyrmions. Nat. Commun. 2022, 13, 8.

[19]

Xie, Y.; Song, Y. P.; Sun, G. T.; Hu, P. F.; Bednarkiewicz, A.; Sun, L. N. Lanthanide-doped heterostructured nanocomposites toward advanced optical anti-counterfeiting and information storage. Light Sci. Appl. 2022, 11, 150.

[20]

Wang, J. H.; Song, B.; Tang, J. L.; Hu, G. Y.; Wang, J. Y.; Cui, M. Y.; He, Y. Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Res. 2020, 13, 1614–1619.

[21]

Chen, Q. P.; Huang, X. J.; Yang, D. D.; Le, Y. K.; Pan, Q. W.; Li, M. J.; Zhang, H.; Kang, J.; Xiao, X. D.; Qiu, J. R. et al. Three-dimensional laser writing aligned perovskite quantum dots in glass for polarization-sensitive anti-counterfeiting. Adv. Opt. Mater. 2023, 11, 2300090.

[22]

Liao, M. H.; Zheng, S. S.; Pan, S. X.; Lu, D. J.; He, W. Q.; Situ, G. H.; Peng, X. Deep-learning-based ciphertext-only attack on optical double random phase encryption. Opto-Electron. Adv. 2021, 4, 200016.

[23]

Guo, Y. M.; Zhong, L. B.; Min, L.; Wang, J. Y.; Wu, Y.; Chen, K. L.; Wei, K.; Rao, C. H. Adaptive optics based on machine learning: A review. Opto-Electron. Adv. 2022, 5, 200082.

[24]

Zhou, R. R.; Cheng, C. A.; Wang, X. Y.; Nie, K.; Wu, J.; Wu, M. Y.; Duan, X. Q.; Hu, Z. Y.; Huq, I. U.; Wang, H. et al. Metal halide perovskite nanocrystals with enhanced photoluminescence and stability toward anti-counterfeiting high-performance flexible fibers. Nano Res. 2023, 16, 3542–3551.

[25]

Dodda, A.; Radhakrishnan, S. S.; Schranghamer, T. F.; Buzzell1, D.; Sengupta, P.; Das, S. Graphene-based physically unclonable functions that are reconfigurable and resilient to machine learning attacks. Nat. Electron. 2021, 4, 364–374.

[26]

Kayaci, N.; Ozdemir, R.; Kalay, M.; Kiremitler, N. B.; Usta, H.; Onses, M. S. Organic light-emitting physically unclonable functions. Adv. Funct. Mater. 2022, 32, 2108675.

[27]

Thomas, H.; Pastoetter, D. L.; Gmelch, M.; Achenbach, T.; Schlögl, A.; Louis, M.; Feng, X. L.; Reineke, S. Aromatic phosphonates: A novel group of emitters showing blue ultralong room temperature phosphorescence. Adv. Mater. 2020, 32, 2000880.

[28]

Schranghamer, T. F.; Oberoi, A.; Das, S. Graphene memristive synapses for high precision neuromorphic computing. Nat. Commun. 2020, 11, 5474

[29]

Wang, H. Y.; Zhou, Y. F.; Jiang, X. X.; Sun, B.; Zhu, Y.; Wang, H.; Su, Y. Y.; He, Y. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Angew. Chem., Int. Ed. 2015, 54, 5132–5136.

[30]

Yang, S.; Khare, K.; Lin, P. C. Harnessing surface wrinkle patterns in soft matter. Adv. Funct. Mater. 2010, 20, 2550–2564.

[31]

Stafford, C. M.; Harrison, C.; Beers, K. L.; Karim, A.; Amis, E. J.; VanLandingham, M. R.; Kim, H. C.; Volksen, W.; Miller, R. D.; Simonyi, E. E. A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 2004, 3, 545–550.

[32]

Lin, P. C.; Yang, S. Spontaneous formation of one-dimensional ripples in transit to highly ordered two-dimensional herringbone structures through sequential and unequal biaxial mechanical stretching. Appl. Phys. Lett. 2007, 90, 241903.

[33]
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014, pp 2672–2680.
[34]

Wan, C.; Jones, D. T. Protein function prediction is improved by creating synthetic feature samples with generative adversarial networks. Nat. Mach. Intell. 2020, 2, 540–550.

[35]

Bae, H. J.; Bae, S.; Park, C.; Han, S.; Kim, J.; Kim, L. N.; Kim, K.; Song, S. H.; Park, W.; Kwon, S. Biomimetic microfingerprints for anti-counterfeiting strategies. Adv. Mater. 2015, 27, 2083–2089.

[36]

Yin, J.; Boyce, M. C. Unique wrinkles as identity tags. Nature 2015, 520, 164–165.

[37]

Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212.

[38]

Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393, 146–149.

[39]

Chung, J. Y.; Nolte, A. J.; Stafford, C. M. Surface wrinkling: A versatile platform for measuring thin-film properties. Adv. Mater. 2011, 23, 349–368.

[40]

Wang, J. Y.; Zhang, Q.; Chen, R. Z.; Li, J.; Wang, J. H.; Hu, G. Y.; Cui, M. Y.; Jiang, X.; Song, B.; He, Y. Triple-layer unclonable anti-counterfeiting enabled by huge-encoding capacity algorithm and artificial intelligence authentication. Nano Today 2021, 41, 101324.

[41]

Kench, S.; Cooper, S. J. Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion. Nat. Mach. Intell. 2021, 3, 299–305.

Nano Research
Pages 4371-4378
Cite this article:
Pang X, Zhang Q, Wang J, et al. Artificial optical microfingerprints for advanced anti-counterfeiting. Nano Research, 2024, 17(5): 4371-4378. https://doi.org/10.1007/s12274-023-6337-z
Topics:

605

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 01 September 2023
Revised: 23 October 2023
Accepted: 17 November 2023
Published: 28 December 2023
© Tsinghua University Press 2023
Return