Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Promoting the oxygen reduction reaction (ORR) is critical for commercialization of intermediate-temperature solid oxide fuel cells (IT-SOFCs), where Sr2Fe1.5Mo0.5O6−δ (SFM) is a promising cathode by working as a mixed ionic and electronic conductor. In this work, doping of In3+ greatly increases the oxygen vacancy concentration and the content of adsorbed oxygen species in Sr2Fe1.5Mo0.5−xInxO6−δ (SFMInx), and thus effectively promotes the ORR performance. As a typical example, SFMIn0.1 reduces the polarization resistance (Rp) from 0.089 to 0.046 Ω∙cm2 at 800 °C, which is superior to those doped with other metal elements. In addition, SFMIn0.1 increases the peak power density from 0.92 to 1.47 W∙cm−2 at 800 °C with humidified H2 as the fuel, indicating that In3+ doping at the Mo site can effectively improve the performance of SOFC cathode material.
Zhang, S. W.; Wan, Y. H.; Xu, Z. Q.; Xue, S. S.; Zhang, L. J.; Zhang, B. Z.; Xia, C. R. Bismuth doped La0.75Sr0.25Cr0.5Mn0.5O3− δ perovskite as a novel redox-stable efficient anode for solid oxide fuel cells. J. Mater. Chem. A 2020, 8, 11553–11563.
Zhang, B. Z.; Wan, Y. H.; Hua, Z. H.; Tang, K. B.; Xia, C. R. Tungsten-doped PrBaFe2O5+ δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells. ACS Appl. Energy Mater. 2021, 4, 8401–8409.
Atkinson, A.; Barnett, S.; Gorte, R. J.; Irvine, J. T. S.; Mcevoy, A. J.; Mogensen, M.; Singhal, S. C.; Vohs, J. Advanced anodes for high-temperature fuel cells. Nat. Mater. 2004, 3, 17–27.
Gou, M. L.; Ren, R. Z.; Sun, W.; Xu, C. M.; Meng, X. G.; Wang, Z. H.; Qiao, J. S.; Sun, K. N. Nb-doped Sr2Fe1.5Mo0.5O6− δ electrode with enhanced stability and electrochemical performance for symmetrical solid oxide fuel cells. Ceram. Int. 2019, 45, 15696–15704.
Bellino, M. G.; Sacanell, J. G.; Lamas, D. G.; Leyva, A. G.; Walsöe de Reca, N. E. High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes. J. Am. Chem. Soc. 2007, 129, 3066–3067.
Zhang, L. H.; Sun, W.; Xu, C. M.; Ren, R. Z.; Yang, X. X.; Qiao, J. S.; Wang, Z. H.; Sun, K. N. Attenuating a metal-oxygen bond of a double perovskite oxide via anion doping to enhance its catalytic activity for the oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 14091–14098.
Shen, L. Y.; Du, Z. H.; Zhang, Y.; Dong, X.; Zhao, H. L. Medium-Entropy perovskites Sr(Fe α Ti β Co γ Mn ζ )O3− δ as promising cathodes for intermediate temperature solid oxide fuel cell. Appl. Catal. B: Environ. 2021, 295, 120264.
Wang, S. B.; Xu, J. S.; Wu, M.; Song, Z. Y.; Wang, L.; Zhang, L. L.; Yang, J.; Long, W.; Zhang, L. Cobalt-free perovskite cathode BaFe0.9Nb0.1O3− δ for intermediate-temperature solid oxide fuel cell. J. Alloys Compd. 2021, 872, 159701.
Hashim, S. S.; Liang, F. L.; Zhou, W.; Sunarso, J. Cobalt-free perovskite cathodes for solid oxide fuel cells. ChemElectroChem 2019, 6, 3549–3569.
Li, H.; Lü, Z. Highly active and stable tin-doped perovskite-type oxides as cathode materials for solid oxide fuel cells. Electrochim. Acta 2020, 361, 137054.
Zhang, B. Z.; Zhang, S. W.; Han, H. R.; Tang, K. B.; Xia, C. R. Cobalt-free double perovskite oxide as a promising cathode for solid oxide fuel cells. ACS Appl. Mater. Interfaces 2023, 15, 8253–8262.
Zhang, B. Z.; Zhang, S. W.; Zhang, Z.; Tang, K. B.; Xia, C. R. Metal-supported solid oxide electrolysis cell for direct CO2 electrolysis using stainless steel based cathode. J. Power Sources 2023, 556, 232467.
Pan, X.; Wang, Z. B.; He, B. B.; Wang, S. R.; Wu, X. J.; Xia, C. R. Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6 electrode for solid oxide fuel cell. Int. J. Hydrogen Energy 2013, 38, 4108–4115.
Dai, N. N.; Feng, J.; Wang, Z. H.; Jiang, T. Z.; Sun, W.; Qiao, J. S.; Sun, K. N. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5− x Ni x Mo0.5O6− δ ( x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs. J. Mater. Chem. A 2013, 1, 14147–14153.
Gu, L. N.; Meng, G. Y. Preparation of Sm-doped ceria (SDC) nanowires and tubes by gas-liquid co-precipitation at room temperature. Mater. Res. Bull. 2008, 43, 1555–1561.
Wang, Y.; Zhang, L.; Xia, C. R. Enhancing oxygen surface exchange coefficients of strontium-doped lanthanum manganates with electrolytes. Int. J. Hydrogen Energy 2012, 37, 2182–2186.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Muñoz-García, A. B.; Bugaris, D. E.; Pavone, M.; Hodges, J. P.; Huq, A.; Chen, F. L.; zur Loye, H. C.; Carter, E. A. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6− δ , an electrode material for symmetric solid oxide fuel cells. J. Am. Chem. Soc. 2012, 134, 6826–6833.
Mastrikov, Y. A.; Merkle, R.; Kotomin, E. A.; Kuklja, M. M.; Maier, J. Formation and migration of oxygen vacancies in La1− x Sr x Co1– y Fe y O3− δ perovskites: Insight from ab initio calculations and comparison with Ba1− x Sr x Co1− y Fe y O3− δ . Phys. Chem. Chem. Phys. 2013, 15, 911–918.
Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658.
Liu, Q.; Bugaris, D. E.; Xiao, G. L.; Chmara, M.; Ma, S. G.; zur Loye, H. C.; Amiridis, M. D.; Chen, F. L. Sr2Fe1.5Mo0.5O6− δ as a regenerative anode for solid oxide fuel cells. J. Power Sources 2011, 196, 9148–9153.
Gou, Y. J.; Li, G. D.; Ren, R. Z.; Xu, C. M.; Qiao, J. S.; Sun, W.; Sun, K. N.; Wang, Z. H. Pr-doping motivating the phase transformation of the BaFeO3− δ perovskite as a high-performance solid oxide fuel cell cathode. ACS Appl. Mater. Interfaces 2021, 13, 20174–20184.
Zhang, S. W.; Zhu, K.; Hu, X. Y.; Peng, R. R.; Xia, C. R. Antimony doping to greatly enhance the electrocatalytic performance of Sr2Fe1.5Mo0.5O6− δ perovskite as a ceramic anode for solid oxide fuel cells. J. Mater. Chem. A 2021, 9, 24336–24347.
Yang, Y.; Shi, N.; Xie, Y.; Li, X. Y.; Hu, X. Y.; Zhu, K.; Huan, D. M.; Peng, R. R.; Xia, C. R.; Lu, Y. L. K doping as a rational method to enhance the sluggish air-electrode reaction kinetics for proton-conducting solid oxide cells. Electrochim. Acta 2021, 389, 138453.
Deka, D. J.; Kim, J.; Gunduz, S.; Ferree, M.; Co, A. C.; Ozkan, U. S. Temperature-induced changes in the synthesis gas composition in a high-temperature H2O and CO2 co-electrolysis system. Appl. Catal. A: Gen. 2020, 602, 117697.
Meng, J. L.; Liu, X. J.; Han, L.; Bai, Y. J.; Yao, C. G.; Deng, X. L.; Niu, X. D.; Wu, X. J.; Meng, J. Improved electrochemical performance by doping cathode materials Sr2Fe1.5Mo0.5– x Ta x O6– δ (0.0 ≤ x ≤ 0.15) for Solid State Fuel Cell. J. Power Sources 2014, 247, 845–851.
Shao, Z. P.; Xiong, G. X.; Tong, J. H.; Dong, H.; Yang, W. S. Ba effect in doped Sr(Co0.8Fe0.2)O3− δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Sep. Purif. Technol. 2001, 25, 419–429.
Sun, W.; Li, P. Q.; Xu, C. M.; Dong, L. K.; Qiao, J. S.; Wang, Z. H.; Rooney, D.; Sun, K. N. Investigation of Sc doped Sr2Fe1.5Mo0.5O6 as a cathode material for intermediate temperature solid oxide fuel cells. J. Power Sources 2017, 343, 237–245.
Liu, H. Y.; Zhu, X. F.; Cheng, M. J.; Cong, Y.; Yang, W. S. Novel Mn1.5Co1.5O4 spinel cathodes for intermediate temperature solid oxidefuel cells. Chem. Commun. 2011, 47, 2378–2380.
Bouwmeester, H. J. M.; Den Otter, M. W.; Boukamp, B. A. Oxygen transport in La0.6Sr0.4Co1− y Fe y O3− δ . J. Solid State Electrochem. 2004, 8, 599–605.
ten Elshof, J. E.; Lankhorst, M. H. R.; Bouwmeester, H. J. M. Chemical diffusion and oxygen exchange of La0.6Sr0.4Co0.6Fe0.4O3− δ . Solid State Ionics 1997, 99, 15–22.
Yasuda, I.; Hikita, T. Precise determination of the chemical diffusion coefficient of calcium-doped lanthanum chromites by means of electrical conductivity relaxation. J. Electrochem. Soc. 1994, 141, 1268–1273.
Zhang, S. W.; Jiang, Y. N.; Han, H. R.; Li, Y. H.; Xia, C. R. Perovskite oxyfluoride ceramic with in situ exsolved Ni-Fe nanoparticles for direct CO2 electrolysis in solid oxide electrolysis cells. ACS Appl. Mater. Interfaces 2022, 14, 28854–28864.
Liu, Q.; Dong, X. H.; Xiao, G. L.; Zhao, F.; Chen, F. L. A novel electrode material for symmetrical SOFCs. Adv. Mater. 2010, 22, 5478–5482.
Hayd, J.; Yokokawa, H.; Ivers-Tiffée, E. Hetero-interfaces at nanoscaled (La,Sr)CoO3− δ thin-film cathodes enhancing oxygen surface-exchange properties. J. Electrochem. Soc. 2013, 160, F351–F359.
Sumi, H.; Yamaguchi, T.; Hamamoto, K.; Suzuki, T.; Fujishiro, Y. High performance of La0.6Sr0.4Co0.2Fe0.8O3-Ce0.9Gd0.1O1.95 nanoparticulate cathode for intermediate temperature microtubular solid oxide fuel cells. J. Power Sources 2013, 226, 354–358.
Zhang, Y. X.; Chen, Y.; Yan, M. F.; Chen, F. L. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J. Power Sources 2015, 283, 464–477.
Osinkin, D. A.; Beresnev, S. M.; Khodimchuk, A. V.; Korzun, I. V.; Lobachevskaya, N. I.; Suntsov, A. Y. Functional properties and electrochemical performance of Ca-doped Sr2− x Ca x Fe1.5Mo0.5O6− δ as anode for solid oxide fuel cells. J. Solid State Electrochem. 2019, 23, 627–634.