AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A multi-terminal ion-controlled transistor with multifunctionality and wide temporal dynamics for reservoir computing

Kekang Liu1Jie Li2Fangzhou Li1Yiyuan Lin3Hongrui Liu1Linzi Liang1Zhiyuan Luo1Wei Liu3Mengye Wang1( )Feichi Zhou2( )Yanghui Liu1( )
School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
School of Software, East China Jiaotong University, Nanchang 330013, China
Show Author Information

Graphical Abstract

We propose a reconfigurable multi-terminal electrolyte-gated transistor (MTEGT) and utilize it to construct a parallel reservoir computing system. The MTEGT-based reservoir computing (RC) system performs well in tasks such as handwritten digit recognition and predicting a second-order nonlinear dynamic equation, demonstrating the advantages of multi-terminal transistors in constructing compact and low hardware-cost physical reservoirs with multiple timescales.

Abstract

Reservoir computing (RC) is an energy-efficient computational framework with low training cost and high efficiency in processing spatiotemporal information. The state-of-the-art fully memristor-based hardware RC system suffers from bottlenecks in the computation efficiencies and accuracy due to the limited temporal tunability in the volatile memristor for the reservoir layer and the nonlinearity in the nonvolatile memristor for the readout layer. Additionally, integrating different types of memristors brings fabrication and integration complexities. To overcome the challenges, a multifunctional multi-terminal electrolyte-gated transistor (MTEGT) that combines both electrostatic and electrochemical doping mechanisms is proposed in this work, integrating both widely tunable volatile dynamics with high temporal tunable range of 102 and nonvolatile memory properties with high long-term potentiation/long-term depression (LTP/LTD) linearity into a single device. An ion-controlled physical RC system fully implemented with only one type of MTEGT is constructed for image recognition using the volatile dynamics for the reservoir and nonvolatility for the readout layer. Moreover, an ultralow normalized mean square error of 0.002 is achieved in a time series prediction task. It is believed that the MTEGT would underlie next-generation neuromorphic computing systems with low hardware costs and high computational performance.

Electronic Supplementary Material

Download File(s)
12274_2023_6343_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Wang, Z. R.; Wu, H. Q.; Burr, G. W.; Hwang, C. S.; Wang, K. L.; Xia, Q. F.; Yang, J. J. Resistive switching materials for information processing. Nat. Rev. Mater. 2020, 5, 173–195.

[2]

Zidan, M. A.; Strachan, J. P.; Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29.

[3]

Chen, K. T.; Chen, J. S. Perspective on oxide-based three-terminal artificial synapses in physical neural networks. Appl. Phys. Lett. 2022, 121, 190501.

[4]

Verstraeten, D.; Schrauwen, B.; D'Haene, M.; Stroobandt, D. An experimental unification of reservoir computing methods. Neural Netw. 2007, 20, 391–403.

[5]

Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 2002, 14, 2531–2560.

[6]

Lukoševičius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3, 127–149.

[7]

Tanaka, G.; Yamane, T.; Héroux, J. B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent advances in physical reservoir computing: A review. Neural Netw. 2019, 115, 100–123.

[8]

Cucchi, M.; Abreu, S.; Ciccone, G.; Brunner, D.; Kleemann, H. Hands-on reservoir computing: A tutorial for practical implementation. Neuromorph. Comput. Eng. 2022, 2, 032002.

[9]

Appeltant, L.; Soriano, M. C.; Van der Sande, G.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C. R.; Fischer, I. Information processing using a single dynamical node as complex system. Nat. Commun. 2011, 2, 468.

[10]

Zhong, Y. N.; Tang, J. S.; Li, X. Y.; Gao, B.; Qian, H.; Wu, H. Q. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun. 2021, 12, 408.

[11]

Moon, J.; Ma, W.; Shin, J. H.; Cai, F. X.; Du, C.; Lee, S. H.; Lu, W. D. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2019, 2, 480–487.

[12]

Milano, G.; Pedretti, G.; Montano, K.; Ricci, S.; Hashemkhani, S.; Boarino, L.; Ielmini, D.; Ricciardi, C. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 2022, 21, 195–202.

[13]

Du, C.; Cai, F. X.; Zidan, M. A.; Ma, W.; Lee, S. H.; Lu, W. D. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017, 8, 2204.

[14]

Zhong, Y. N.; Tang, J. S.; Li, X. Y.; Liang, X. P.; Liu, Z. W.; Li, Y. J.; Xi, Y.; Yao, P.; Hao, Z. Q.; Gao, B. et al. A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat. Electron. 2022, 5, 672–681.

[15]

Kim, S.; Choi, S.; Lu, W. Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano 2014, 8, 2369–2376.

[16]

John, R. A.; Demirağ, Y.; Shynkarenko, Y.; Berezovska, Y.; Ohannessian, N.; Payvand, M.; Zeng, P.; Bodnarchuk, M. I.; Krumeich, F.; Kara, G. et al. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 2022, 13, 2074.

[17]

Liang, X. C.; Luo, Y. Y.; Pei, Y. L.; Wang, M. Y.; Liu, C. Multimode transistors and neural networks based on ion-dynamic capacitance. Nat. Electron. 2022, 5, 859–869.

[18]

Liang, X.; Liu, L.; Cai, G. S.; Yang, P.; Pei, Y. L.; Liu, C. Evidence for pseudocapacitance and faradaic charge transfer in high-mobility thin-film transistors with solution-processed oxide dielectrics. J. Phys. Chem. Lett. 2020, 11, 2765–2771.

[19]

Liu, C.; Chen, C. D.; Li, X. J.; Hu, S. J.; Liu, C. N.; Huang, K. R.; Dai, F. H.; Zhang, B. J.; Liu, X. Y.; Minari, T. et al. A general approach to probe dynamic operation and carrier mobility in field-effect transistors with nonuniform accumulation. Adv. Funct. Mater. 2019, 29, 1901700.

[20]

Liu, K. Q.; Zhang, T.; Dang, B. J.; Bao, L.; Xu, L. Y.; Cheng, C. D.; Yang, Z.; Huang, R.; Yang, Y. C. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 2022, 5, 761–773.

[21]

He, Y. L.; Nie, S.; Liu, R.; Jiang, S. S.; Shi, Y.; Wan, Q. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Adv. Mater. 2019, 31, 1900903.

[22]

Lee, H. R.; Lee, D.; Oh, J. H. A hippocampus-inspired dual-gated organic artificial synapse for simultaneous sensing of a neurotransmitter and light. Adv. Mater. 2021, 33, 2100119.

[23]

Qian, C.; Kong, L. A.; Yang, J. L.; Gao, Y. L.; Sun, J. Multi-gate organic neuron transistors for spatiotemporal information processing. Appl. Phys. Lett. 2017, 110, 083302.

[24]

Li, X. K.; Yu, B. C.; Wang, B. W.; Bao, L.; Zhang, B. T.; Li, H. X.; Yu, Z. Z.; Zhang, T.; Yang, Y. C.; Huang, R. et al. Multi-terminal ionic-gated low-power silicon nanowire synaptic transistors with dendritic functions for neuromorphic systems. Nanoscale 2020, 12, 16348–16358.

[25]

Guo, J. M.; Liu, Y. H.; Zhou, F. C.; Li, F. Z.; Li, Y. T.; Huang, F. Linear classification function emulated by pectin-based polysaccharide-gated multiterminal neuron transistors. Adv. Funct. Mater. 2021, 31, 2102015.

[26]

Liu, Y. H.; Zhu, L. Q.; Feng, P.; Shi, Y.; Wan, Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv. Mater. 2015, 27, 5599–5604.

[27]

Li, F. Z.; Liu, H. R.; Guo, J. M.; Zhou, X. Y.; Liu, K. K.; Liang, L. Z.; Pei, X. Y.; Zhou, F. C.; Huang, F.; Wang, H. et al. An artificial thermal nociceptor based on xanthan gum-gated synaptic transistors to emulate human thermal nociception. Adv. Intell. Syst. 2022, 4, 2200233.

[28]

Ji, J. L.; Wang, H. W.; Liu, R.; Jiang, X. N.; Zhang, Q.; Peng, Y. B.; Sang, S. B.; Sun, Q. J.; Wang, Z. L. Dual-liquid-gated electrochemical transistor and its neuromorphic behaviors. Nano Energy 2021, 87, 106116.

[29]

Yu, J. R.; Gao, G. Y.; Huang, J. R.; Yang, X. X.; Han, J.; Zhang, H.; Chen, Y. H.; Zhao, C. L.; Sun, Q. J.; Wang, Z. L. Contact-electrification-activated artificial afferents at femtojoule energy. Nat. Commun. 2021, 12, 1581.

[30]

Liu, A.; Liu, G. X.; Zhu, H. H.; Song, H. J.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F. Water-induced scandium oxide dielectric for low-operating voltage n- and p-type metal-oxide thin-film transistors. Adv. Funct. Mater. 2015, 25, 7180–7188.

[31]

Guo, J. M.; Li, F. Z.; Zhang, D.; Liu, Y. H.; Zheng, W. Effect of annealing temperature on solar-blind ultraviolet photodetectors based on solution-processed scandium oxide films. IEEE Electron. Device Lett. 2022, 43, 1507–1510.

[32]

Zhu, L. Q.; Wan, C. J.; Guo, L. Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 3158.

[33]

Yang, J. T.; Ge, C.; Du, J. Y.; Huang, H. Y.; He, M.; Wang, C.; Lu, H. B.; Yang, G. Z.; Jin, K. J. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 2018, 30, 1801548.

[34]

Yu, J. R.; Wang, Y. F.; Qin, S. S.; Gao, G. Y.; Xu, C.; Wang, Z. L.; Sun, Q. J. Bioinspired interactive neuromorphic devices. Mater Today 2022, 60, 158–182.

[35]
Ji, J. L.; Wang, Z. X.; Zhang, F.; Wang, B.; Niu, Y.; Jiang, X. N.; Qiao, Z. Y.; Ren, T. L.; Zhang, W. D.; Sang, S. B. et al. Pulse electrochemical synaptic transistor for supersensitive and ultrafast biosensors. InfoMat, in press, https://doi.org/10.1002/inf2.12478.
[36]

Zhang, H.; Yu, J. R.; Yang, X. X.; Gao, G. Y.; Qin, S. S.; Sun, J.; Ding, M.; Jia, C. K.; Sun, Q. J.; Wang, Z. L. Ion gel capacitively coupled tribotronic gating for multiparameter distance sensing. ACS Nano 2020, 14, 3461–3468.

[37]

Chang, T.; Jo, S. H.; Lu, W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 2011, 5, 7669–7676.

[38]

Guo, Y. B.; Zhu, L. Q.; Long, T. Y.; Wan, D. Y.; Ren, Z. Y. Bio-polysaccharide electrolyte gated photoelectric synergic coupled oxide neuromorphic transistor with Pavlovian activities. J Mater. Chem. C 2020, 8, 2780–2789.

[39]
Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 1980.
[40]

Phillips, J. C. Stretched exponential relaxation in molecular and electronic glasses. Rep. Prog. Phys. 1996, 59, 1133–1207.

[41]

Sturman, B.; Podivilov, E.; Gorkunov, M. Origin of stretched exponential relaxation for hopping-transport models. Phys. Rev. Lett. 2003, 91, 176602.

[42]

Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

[43]

LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324.

[44]

Midya, R.; Wang, Z. R.; Asapu, S.; Zhang, X. M.; Rao, M. Y.; Song, W. H.; Zhuo, Y.; Upadhyay, N.; Xia, Q. F.; Yang, J. J. Reservoir computing using diffusive memristors. Adv. Intell. Syst. 2019, 1, 1900084.

[45]

Koh, S. G.; Shima, H.; Naitoh, Y.; Akinaga, H.; Kinoshita, K. Reservoir computing with dielectric relaxation at an electrode-ionic liquid interface. Sci. Rep. 2022, 12, 6958.

[46]

Nishioka, D.; Tsuchiya, T.; Namiki, W.; Takayanagi, M.; Imura, M.; Koide, Y.; Higuchi, T.; Terabe, K. Edge-of-chaos learning achieved by ion-electron-coupled dynamics in an ion-gating reservoir. Sci. Adv. 2022, 8, eade1156.

[47]

Atiya, A. F.; Parlos, A. G. New results on recurrent network training: Unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 2000, 11, 697–709.

[48]
Liu, H. B.; Duan, S. K.; Jiang, W. W.; Li, J.; Wang, L. D. Nonlinear system identification using dynamic memristor-based reservoir computing system. In Proceedings of the IEEE 5th International Conference on Electronics Technology (ICET), Chengdu, China, 2022, pp. 885–889.
[49]

Liang, X. P.; Zhong, Y. N.; Tang, J. S.; Liu, Z. W.; Yao, P.; Sun, K. Y.; Zhang, Q. T.; Gao, B.; Heidari, H.; Qian, H. et al. Rotating neurons for all-analog implementation of cyclic reservoir computing. Nat. Commun. 2022, 13, 1549.

Nano Research
Pages 4444-4453
Cite this article:
Liu K, Li J, Li F, et al. A multi-terminal ion-controlled transistor with multifunctionality and wide temporal dynamics for reservoir computing. Nano Research, 2024, 17(5): 4444-4453. https://doi.org/10.1007/s12274-023-6343-1
Topics:

1086

Views

5

Crossref

3

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 26 September 2023
Revised: 29 October 2023
Accepted: 17 November 2023
Published: 28 December 2023
© Tsinghua University Press 2023
Return