AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dual-aligned porous electrodes for enhanced hydrogen evolution in alkaline water electrolysis

Yuqi Zhang1,2Wenzhi Cui1,2( )Longjian Li1,2Chongbo Wang1,2Chen Zhan1,2Xiaojun Quan3
School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
School of Mechanical Engineering, Shanghai Jiao-Tong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

The simple magnetic-aligned process makes the performance of aligned porous electrode further improved.

Abstract

The efficiency of water electrolysis is significantly affected by the bubbles on the surface and inside the electrode. To enhance the gas–liquid transfer within the porous electrodes, we developed an innovative design termed dual-aligned porous electrode (D-APE), achieved by integrating magnetic alignment with freeze casting techniques. This paper investigates the hydrogen evolution performance of porous electrodes prepared using four different methods: evaporation, magnetic-aligned evaporation, freeze casting, and dual-aligned methods. The findings demonstrate that the magnetic-aligned process effectively alters the electrode structure, resulting in improved hydrogen evolution performance. Notably, among all the examined electrodes, the D-APE exhibits the highest hydrogen evolution performance, with further enhancements observed with prolonged the time of magnetic alignment. Furthermore, a comparison is made between electrodes prepared using the freeze casting method and the dual-aligned method at various thickness. The results show that the thinner D-APE exhibits excellent hydrogen evolution performance at high current density. Moreover, the D-APE demonstrates significantly improved material utilization rates compared to the conventional freeze casting method, offering promising prospects for enhancing the efficiency of water electrolysis.

Electronic Supplementary Material

Video
12274_2023_6346_MOESM2_ESM.mp4
12274_2023_6346_MOESM3_ESM.mp4
12274_2023_6346_MOESM4_ESM.mp4
12274_2023_6346_MOESM5_ESM.mp4
12274_2023_6346_MOESM6_ESM.mp4
12274_2023_6346_MOESM7_ESM.mp4
Download File(s)
12274_2023_6346_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Hermesmann, M.; Müller, T. E. Green, turquoise, blue, or grey. Environmentally friendly hydrogen production in transforming energy systems. Prog. Energy Combust. Sci. 2022, 90, 100996.

[2]

van Leeuwen, C.; Mulder, M. Power-to-gas in electricity markets dominated by renewables. Appl. Energy 2018, 232, 258–272.

[3]

Colbertaldo, P.; Guandalini, G.; Campanari, S. Modelling the integrated power and transport energy system: The role of power-to-gas and hydrogen in long-term scenarios for Italy. Energy 2018, 154, 592–601.

[4]

Lewandowska-Bernat, A.; Desideri, U. Opportunities of power-to-gas technology in different energy systems architectures. Appl. Energy 2018, 228, 57–67.

[5]

Mazza, A.; Bompard, E.; Chicco, G. Applications of power to gas technologies in emerging electrical systems. Renew. Sustain. Energy Rev. 2018, 92, 794–806.

[6]

Bailera, M.; Peña, B.; Lisbona, P.; Romeo, L. M. Decision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings. Appl. Energy 2018, 228, 1032–1045.

[7]

Grueger, F.; Möhrke, F.; Robinius, M.; Stolten, D. Early power to gas applications: Reducing wind farm forecast errors and providing secondary control reserve. Appl. Energy 2017, 192, 551–562.

[8]

Cullen, D. A.; Neyerlin, K. C.; Ahluwalia, R. K.; Mukundan, R.; More, K. L.; Borup, R. L.; Weber, A. Z.; Myers, D. J.; Kusoglu, A. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 2021, 6, 462–474.

[9]

Jiao, K.; Xuan, J.; Du, Q.; Bao, Z. M.; Xie, B.; Wang, B. W.; Zhao, Y.; Fan, L. H.; Wang, H. Z.; Hou, Z. J. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369.

[10]

Mohammadi, A.; Mehrpooya, M. A comprehensive review on coupling different types of electrolyzer to renewable energy sources. Energy 2018, 158, 632–655.

[11]

Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable power-to-gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390.

[12]

Wang, M. Y.; Wang, Z.; Gong, X. Z.; Guo, Z. C. The intensification technologies to water electrolysis for hydrogen production—A review. Renew. Sustain. Energy Rev. 2014, 29, 573–588.

[13]

Yuan, S.; Zhao, C. F.; Cai, X. Y.; An, L.; Shen, S. Y.; Yan, X. H.; Zhang, J. L. Bubble evolution and transport in PEM water electrolysis: Mechanism, impact, and management. Prog. Energy Combust. Sci. 2023, 96, 101075.

[14]

Deng, X. T.; Yang, F. Y.; Li, Y. Y.; Dang, J.; Ouyang, M. G. Quantitative study on gas evolution effects under large current density in zero-gap alkaline water electrolyzers. J. Power Sources 2023, 555, 232378.

[15]

Dukovic, J.; Tobias, C. W. The influence of attached bubbles on potential drop and current distribution at gas-evolving electrodes. J. Electrochem. Soc. 1987, 134, 331–343.

[16]

Zhao, X.; Ren, H.; Luo, L. Gas bubbles in electrochemical gas evolution reactions. Langmuir 2019, 35, 5392–5408.

[17]

Sullivan, I.; Zhang, H. L.; Zhu, C.; Wood, M.; Nelson, A. J.; Baker, S. E.; Spadaccini, C. M.; Van Buuren, T.; Lin, M.; Duoss, E. B. et al. 3D printed nickel-molybdenum-based electrocatalysts for hydrogen evolution at low overpotentials in a flow-through configuration. ACS Appl. Mater. Interfaces 2021, 13, 20260–20268.

[18]

Liu, H. B.; Hu, Q.; Pan, L. M.; Wu, R.; Liu, Y.; Zhong, D. H. Electrode-normal magnetic field facilitating neighbouring electrochemical bubble release from hydrophobic islets. Electrochim. Acta 2019, 306, 350–359.

[19]

Baczyzmalski, D.; Karnbach, F.; Mutschke, G.; Yang, X. G.; Eckert, K.; Uhlemann, M.; Cierpka, C. Growth and detachment of single hydrogen bubbles in a magnetohydrodynamic shear flow. Phys. Rev. Fluids 2017, 2, 093701.

[20]

Lin, M. Y.; Hsu, W. N.; Hourng, L. W.; Shih, T. S.; Hung, C. M. Effect of lorentz force on hydrogen production in water electrolysis employing multielectrodes. J. Mar. Sci. Technol. 2016, 24, 511–518.

[21]

Cho, K. M.; Deshmukh, P. R.; Shin, W. G. Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis. Ultrason. Sonochem. 2021, 80, 105796.

[22]

Li, S. D.; Wang, C. C.; Chen, C. Y. Water electrolysis in the presence of an ultrasonic field. Electrochim. Acta 2009, 54, 3877–3883.

[23]

Yang, F. C.; Kim, M. J.; Brown, M.; Wiley, B. J. Alkaline water electrolysis at 25 A·cm–2 with a microfibrous flow-through electrode. Adv. Energy Mater. 2020, 10, 2001174.

[24]

Chen, Y.; Chen, J. J.; Bai, K.; Xiao, Z. Y.; Fan, S. Q. A flow-through electrode for hydrogen production from water splitting by mitigating bubble induced overpotential. J. Power Sources 2023, 561, 232733.

[25]

Eigeldinger, J.; Vogt, H. The bubble coverage of gas-evolving electrodes in a flowing electrolyte. Electrochim. Acta 2000, 45, 4449–4456.

[26]

Bae, M.; Kang, Y.; Lee, D. W.; Jeon, D.; Ryu, J. Superaerophobic polyethyleneimine hydrogels for improving electrochemical hydrogen production by promoting bubble detachment. Adv. Energy Mater. 2022, 12, 2201452.

[27]

Jeon, D.; Park, J.; Shin, C.; Kim, H.; Jang, J. W.; Lee, D. W.; Ryu, J. Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production. Sci. Adv. 2020, 6, eaaz3944.

[28]

Zhang, Z. J.; Wu, Y. H.; Zhang, D. P. Potentiostatic electrodeposition of cost-effective and efficient Ni-Fe electrocatalysts on Ni foam for the alkaline hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 1425–1434.

[29]

Liu, W. N.; Xia, T. Y.; Ye, Y. M.; Wang, H.; Fang, Z.; Du, Z. T.; Hou, X. M. Self-supported Ni3N nanoarray as an efficient nonnoble-metal catalyst for alkaline hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 27037–27043.

[30]

Guo, J. W.; Wei, Z. J.; Wang, K.; Zhang, H. Synergistic coupling of CoFe-layered double hydroxide nanosheet arrays with reduced graphene oxide modified Ni foam for highly efficient oxygen evolution reaction and hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 27529–27542.

[31]

Qiu, Y. L.; Zhang, X. Y.; Han, H.; Liu, Z. Q.; Liu, J. Q.; Ji, X. Q. Advantageous metal-atom-escape towards super-hydrophilic interfaces assembly for efficient overall water splitting. J. Power Sources 2021, 499, 229941.

[32]

Yang, Y.; Li, J.; Yang, Y. R.; Lan, L. H.; Liu, R.; Fu, Q.; Zhang, L.; Liao, Q.; Zhu, X. Gradient porous electrode-inducing bubble splitting for highly efficient hydrogen evolution. Appl. Energy 2022, 307, 118278.

[33]

Xu, X.; Fu, G. W.; Wang, Y. X.; Cao, Q. H.; Xun, Y. R.; Li, C.; Guan, C.; Huang, W. Highly efficient all-3D-printed electrolyzer toward ultrastable water electrolysis. Nano Lett. 2023, 23, 629–636.

[34]

Márquez, R. A.; Kawashima, K.; Son, Y. J.; Rose, R.; Smith, L. A.; Miller, N.; Carrasco Jaim, O. A.; Celio, H.; Mullins, C. B. Tailoring 3D-printed electrodes for enhanced water splitting. ACS Appl. Mater. Interfaces 2022, 14, 42153–42170.

[35]

Kim, Y. J.; Lim, A.; Kim, J. M.; Lim, D.; Chae, K. H.; Cho, E. N.; Han, H. J.; Jeon, K. U.; Kim, M.; Lee, G. H. et al. Highly efficient oxygen evolution reaction via facile bubble transport realized by three-dimensionally stack-printed catalysts. Nat. Commun. 2020, 11, 4921.

[36]

Taylor, A. K.; Mou, T.; Sonea, A.; Chen, J. Y.; Yee, B. B.; Gates, B. D. Arrays of microscale linear ridges with self-cleaning functionality for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 2399–2413.

[37]

Fujimura, T.; Kunimoto, M.; Fukunaka, Y.; Homma, T. Analysis of the hydrogen evolution reaction at Ni micro-patterned electrodes. Electrochim. Acta 2021, 368, 137678.

[38]

Zhang, S.; Xu, L. S.; Wu, J.; Yang, Y.; Zhang, C. X.; Tao, H. Y.; Lin, J. Q.; Huang, L. C.; Fang, W. C.; Shi, K. Y. et al. Femtosecond laser micro-nano processing for boosting bubble releasing of gas evolution reactions. Nano Res. 2022, 15, 1672–1679.

[39]

Wang, Z. K.; Song, L.; Tao, H. Y.; He, Y. W.; Yang, Y.; Wang, T. Q.; Yu, H.; Lin, J. Q.; Dong, X. T. Industrial femtosecond laser induced construction of micro/nano wettability electrodes with outstanding hydrogen evolution performance. Appl. Surf. Sci. 2023, 626, 157179.

[40]

Paul, M. T. Y.; Yee, B. B.; Bruce, D. R.; Gates, B. D. Hexagonal arrays of cylindrical nickel microstructures for improved oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 7036–7043.

[41]

Yeon, J. S.; Gupta, N.; Bhattacharya, P.; Park, H. S. A new era of integrative ice frozen assembly into multiscale architecturing of energy materials. Adv. Funct. Mater. 2022, 32, 2112509.

[42]

Shao, G. F.; Hanaor, D. A. H.; Shen, X. D.; Gurlo, A. Freeze casting: From low-dimensional building blocks to aligned porous structures—A review of novel materials, methods, and applications. Adv. Mater. 2020, 32, 1907176.

[43]

Zu, L. G.; Wu, J. S.; Liu, X. L.; Zhang, L.; Zhou, K. C. Porous NiCu alloy with tailored pore structure and mechanical property fabricated by freezing casting. Mater. Res. Express 2017, 4, 116524.

[44]

Scotti, K. L.; Dunand, D. C. Freeze casting—A review of processing, microstructure and properties via the open data repository, FreezeCasting. net. Prog. Mater. Sci. 2018, 94, 243–305.

[45]

Liu, R. P.; Xu, T. T.; Wang, C. A. A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceram. Int. 2016, 42, 2907–2925.

[46]

Liu, X. L.; Wu, J. S.; Luo, B.; Zhang, L.; Lai, Y. Q. Porous Cu foams with oriented pore structure by freeze casting. Mater. Lett. 2017, 205, 249–252.

[47]

Xiao, F.; Li, L. J.; Cui, W. Z.; Zhang, Y. Q.; Zhan, C.; Xiao, W. Y. Aligned porous nickel electrodes fabricated via ice templating with submicron particles for hydrogen evolution in alkaline water electrolysis. J. Power Sources 2023, 556, 232441.

[48]

Zhan, C.; Cui, W. Z.; Li, L. J.; Quan, X. J.; Zhang, Y. Q.; Xiao, F. Dual-aligned carbon nanofiber scaffolds as heat conduction path to enhance thermal conductivity of polymer composites. Compos. Sci. Technol. 2023, 231, 109823.

[49]

Zhang, Y. Q.; Cui, W. Z.; Li, L. J.; Zhan, C.; Xiao, F.; Quan, X. J.; Li, W. P. Effect of the thickness of nickel electrode with aligned porous structure on hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 13552–13560.

Nano Research
Pages 3835-3843
Cite this article:
Zhang Y, Cui W, Li L, et al. Dual-aligned porous electrodes for enhanced hydrogen evolution in alkaline water electrolysis. Nano Research, 2024, 17(5): 3835-3843. https://doi.org/10.1007/s12274-023-6346-y
Topics:

431

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 12 October 2023
Revised: 07 November 2023
Accepted: 15 November 2023
Published: 28 December 2023
© Tsinghua University Press 2023
Return