AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Solar-assisted photocatalytic water splitting using defective UiO-66 solids from modulated synthesis

Celia M. Rueda-Navarro1María Cabrero-Antonino1Paula Escamilla2Valentín Díez-Cabanes3Dong Fan3Pedro Atienzar4Belén Ferrer1Ignacio Vayá1,4Guillaume Maurin3Herme G. Baldoví1( )Sergio Navalón1( )
Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
Instituto de Ciencia Molecular (ICMOL), Universitat de València, Paterna 46980, Spain
ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34095, France
Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Avenida de los Naranjos s/n, Valencia 46022, Spain
Show Author Information

Graphical Abstract

Defective UiO-66(Zr)-X (X: NH2 or NO2) based solids from modulated synthesis with acetic or trifluoroacetic acid show enhanced photocatalytic activities for water splitting reactions due to their efficient photoinduced electron transfer properties.

Abstract

Metal-organic frameworks (MOFs) are attracting increasing interests as photocatalysts for solar-driven hydrogen production from water. This paper reports on a comparative study of using either acetic acid (AA) or trifluoroacetic acid (TFA) as the representative UiO-66 organic modulators for synthesizing visible light responsive UiO-66(Zr)-X (X: NH2 or NO2) photocatalysts for water splitting. The results show that photocatalytic hydrogen generation from a water/methanol mixture can be improved by varying the nature and amount of the modulator employed to prepare the different UiO-66(Zr)-X (X: NH2 or NO2) solid derivatives. UiO-66(Zr)-NH2 was the most active photocatalyst, followed by UiO-66(Zr)-NO2, both prepared with 12 equivalents of AA with respect to the organic ligand. This UiO-66(Zr)-NH2 solid was more active than the parent MOF in photocatalytic overall water splitting (OWS) (H2 and O2 production of 450 and 160 μmol·g−1, respectively, in 5 h; apparent quantum yield (AQY) at 400 nm of 0.06%) in the absence of methanol and compares favourably with analogous reports. Information on the photocatalytic activity of the most active solids of both series was obtained by means of a series of techniques, including ultraviolet–visible (UV−vis) diffuse reflectance, X-ray photoelectron spectroscopy (XPS), laser flash photolysis (LFP), electron spin resonance (ESR), photoluminescence and photoelectrochemical measurements together with density functional theory (DFT) calculations. The results showed that organic acid modulators can be used to enhance the photocatalytic activity of missing linker UiO-66 defective materials in solar-powered water splitting.

Electronic Supplementary Material

Download File(s)
12274_2023_6351_MOESM1_ESM.pdf (12.4 MB)

References

[1]

Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191–214.

[2]

Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.

[3]

Freund, R.; Canossa, S.; Cohen, S. M.; Yan, W.; Deng, H. X.; Guillerm, V.; Eddaoudi, M.; Madden, D. G.; Fairen-Jimenez, D.; Lyu, H. et al. 25 years of reticular chemistry. Angew. Chem., Int. Ed. 2021, 60, 23946–23974.

[4]

Jiang, H.; Alezi, D.; Eddaoudi, M. A reticular chemistry guide for the design of periodic solids. Nat. Rev. Mater. 2021, 6, 466–487.

[5]

Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 23, 2040–2042.

[6]

Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.

[7]

Feng, L.; Day, G. S.; Wang, K. Y.; Yuan, S.; Zhou, H. C. Strategies for pore engineering in zirconium metal-organic frameworks. Chem 2020, 6, 2902–2923.

[8]

Xu, W. T.; Tu, B. B.; Liu, Q.; Shu, Y. F.; Liang, C. C.; Diercks, C. S.; Yaghi, O. M.; Zhang, Y. B.; Deng, H. X.; Li, Q. W. Anisotropic reticular chemistry. Nat. Rev. Mater. 2020, 5, 764–779.

[9]

Li, J. T.; Bhatt, P. M.; Li, J. Y.; Eddaoudi, M.; Liu, Y. L. Recent progress on microfine design of metal-organic frameworks: Structure regulation and gas sorption and separation. Adv. Mater. 2020, 32, 2002563.

[10]

Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.

[11]

Bavykina, A.; Kolobov, N.; Khan, I. S.; Bau, J. A.; Ramirez, A.; Gascon, J. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem. Rev. 2020, 16, 8468–8535.

[12]

Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089–12174.

[13]

Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Ferrer, B.; García, H. Metal-organic frameworks as photocatalysts for solar-driven overall water splitting. Chem. Rev. 2023, 123, 445–490.

[14]

Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173–2210.

[15]

Downes, C. A.; Marinescu, S. C. Electrocatalytic metal-organic frameworks for energy applications. ChemSusChem 2017, 10, 4374–4392.

[16]

Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268.

[17]

Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125.

[18]

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

[19]

Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[20]

Silva, C. G.; Luz, I.; i Xamena, F. X. L.; Corma, A.; García, H. Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chem. -Eur. J. 2010, 16, 11133–11138.

[21]

An, Y.; Liu, Y. Y.; An, P. F.; Dong, J. C.; Xu, B. Y.; Dai, Y.; Qin, X. Y.; Zhang, X. Y.; Whangbo, M. H.; Huang, B. B. NiII coordination to an Al-based metal-organic framework made from 2-aminoterephthalate for photocatalytic overall water splitting. Angew. Chem., Int. Ed. 2017, 56, 3036–3040.

[22]

Jaryal, R.; Kumar, R.; Khullar, S. Mixed metal-metal organic frameworks (MM-MOFs) and their use as efficient photocatalysts for hydrogen evolution from water splitting reactions. Coord. Chem. Rev. 2022, 464, 214542.

[23]

Reddy, D. A.; Kim, Y.; Gopannagari, M.; Kumar, D. P.; Kim, T. K. Recent advances in metal-organic framework-based photocatalysts for hydrogen production. Sust. Energy Fuels 2021, 5, 1597–1618.

[24]

Luo, H. Z.; Zeng, Z. T.; Zeng, G. M.; Zhang, C.; Xiao, R.; Huang, D. L.; Lai, C.; Cheng, M.; Wang, W. J.; Xiong, W. P. et al. Recent progress on metal-organic frameworks based-and derived-photocatalysts for water splitting. Chem. Eng. J. 2020, 383, 123196.

[25]

Meyer, K.; Ranocchiari, M.; Van Bokhoven, J. A. Metal organic frameworks for photo-catalytic water splitting. Energy Environ. Sci. 2015, 8, 1923–1937.

[26]

Melillo, A.; Cabrero-Antonino, M.; Ferrer, B.; Dhakshinamoorthy, A.; Baldoví, H. G.; Navalón, S. MOF-on-MOF composites with UiO-66-based materials as photocatalysts for the overall water splitting under sunlight Irradiation. Energy Fuels 2023, 37, 5457–5468.

[27]

Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem., Int. Ed. 2019, 58, 12175–12179.

[28]

Cabrero-Antonino, M.; Albero, J.; García-Vallés, C.; Álvaro, M.; Navalón, S.; García, H. Plasma-induced defects enhance the visible-light photocatalytic activity of MIL-125(Ti)-NH2 for overall water splitting. Chem. -Eur. J. 2020, 26, 15682–15689.

[29]

Forgan, R. S. Modulated self-assembly of metal-organic frameworks. Chem. Sci. 2020, 11, 4546–4562.

[30]

Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611–8638.

[31]

Taddei, M. When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coord. Chem. Rev. 2017, 343, 1–24.

[32]

Xiang, W. L.; Zhang, Y. P.; Chen, Y. F.; Liu, C. J.; Tu, X. Synthesis, characterization and application of defective metal-organic frameworks: Current status and perspectives. J. Mater. Chem. A 2020, 8, 21526–21546.

[33]

Bagheri, M.; Masoomi, M. Y. Quasi-metal organic frameworks: Preparation, applications and future perspectives. Coord. Chem. Rev. 2022, 468, 214643.

[34]

Ren, J. W.; Ledwaba, M.; Musyoka, N. M.; Langmi, H. W.; Mathe, M.; Liao, S. J.; Pang, W. Structural defects in metal-organic frameworks (MOFs): Formation, detection and control towards practices of interests. Coord. Chem. Rev. 2017, 349, 169–197.

[35]

Feng, X.; Jena, H. S.; Krishnaraj, C.; Leus, K.; Wang, G. B.; Chen, H.; Jia, C. M.; Van Der Voort, P. Generating catalytic sites in UiO-66 through defect engineering. ACS Appl. Mater. Interfaces 2021, 13, 60715–60735.

[36]

Feng, X.; Hajek, J.; Jena, H. S.; Wang, G. B.; Veerapandian, S. K. P.; Morent, R.; De Geyter, N.; Leyssens, K.; Hoffman, A. E. J.; Meynen, V. et al. Engineering a highly defective stable UiO-66 with tunable Lewis–Brønsted acidity: The role of the hemilabile linker. J. Am. Chem. Soc. 2020, 142, 3174–3183.

[37]

Kholdeeva, O.; Maksimchuk, N. Metal-organic frameworks in oxidation catalysis with hydrogen peroxide. Catalysts 2021, 11, 283.

[38]

Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

[39]

Bueken, B.; Van Velthoven, N.; Krajnc, A.; Smolders, S.; Taulelle, F.; Mellot-Draznieks, C.; Mali, G.; Bennett, T. D.; De Vos, D. Tackling the defect conundrum in UiO-66: A mixed-linker approach to engineering missing linker defects. Chem. Mater. 2017, 29, 10478–10486.

[40]

Hou, X. T.; Wang, J. C.; Mousavi, B.; Klomkliang, N.; Chaemchuen, S. Strategies for induced defects in metal-organic frameworks for enhancing adsorption and catalytic performance. Dalton Trans. 2022, 51, 8133–8159.

[41]

Vermoortele, F.; Bueken, B.; Le Bars, G.; Van De Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V. et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: The unique case of UiO-66(Zr). J. Am. Chem. Soc. 2013, 135, 11465–11468.

[42]

Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Defect engineering: Tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis. Chem. Mater. 2016, 28, 3749–3761.

[43]

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

[44]

Tatay, S.; Martínez-Giménez, S.; Rubio-Gaspar, A.; Gómez-Oliveira, E.; Castells-Gil, J.; Dong, Z. Y.; Mayoral, Á.; Almora-Barrios, N.; Padial, N. M.; Martí-Gastaldo, C. Synthetic control of correlated disorder in UiO-66 frameworks. Nat. Commun. 2023, 14, 6962.

[45]

Lázaro, I. A.; Almora-Barrios, N.; Tatay, S.; Popescu, C.; Martí-Gastaldo, C. Linker depletion for missing cluster defects in non-UiO metal-organic frameworks. Chem. Sci. 2021, 12, 11839–11844.

[46]

Shearer, G. C.; Vitillo, J. G.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Functionalizing the defects: Pstsynthetic ligand exchange in the metal organic framework UiO-66. Chem. Mater. 2016, 28, 7190–7193.

[47]

Islamov, M.; Boone, P.; Babaei, H.; McGaughey, A. J. H.; Wilmer, C. E. Correlated missing linker defects increase thermal conductivity in metal-organic framework UiO-66. Chem. Sci. 2023, 14, 6592–6600.

[48]

Liu, L. M.; Chen, Z. J.; Wang, J. J.; Zhang, D. L.; Zhu, Y. H.; Ling, S. L.; Huang, K. W.; Belmabkhout, Y.; Adil, K.; Zhang, Y. X. et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat. Chem. 2019, 11, 622–628.

[49]

Cliffe, M. J.; Wan, W.; Zou, X. D.; Chater, P. A.; Kleppe, A. K.; Tucker, M. G.; Wilhelm, H.; Funnell, N. P.; Coudert, F. X.; Goodwin, A. L. Correlated defect nanoregions in a metal-organic framework. Nat. Commun. 2014, 5, 4176.

[50]

Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 2013, 135, 10525–10532.

[51]

De Vos, A.; Hendrickx, K.; Van Der Voort, P.; Van Speybroeck, V.; Lejaeghere, K. Missing linkers: An alternative pathway to UiO-66 electronic structure engineering. Chem. Mater. 2017, 29, 3006–3019.

[52]

Vandichel, M.; Hajek, J.; Vermoortele, F.; Waroquier, M.; De Vos, D. E.; Van Speybroeck, V. Active site engineering in UiO-66 type metal-organic frameworks by intentional creation of defects: A theoretical rationalization. CrystEngComm 2015, 17, 395–406.

[53]

Vandichel, M.; Hajek, J.; Ghysels, A.; De Vos, A.; Waroquier, M.; Van Speybroeck, V. Water coordination and dehydration processes in defective UiO-66 type metal organic frameworks. CrystEngComm 2016, 18, 7056–7069.

[54]

Jiao, Y.; Liu, Y.; Zhu, G. H.; Hungerford, J. T.; Bhattacharyya, S.; Lively, R. P.; Sholl, D. S.; Walton, K. S. Heat-treatment of defective UiO-66 from modulated synthesis: Adsorption and stability studies. J. Phys. Chem. C 2017, 121, 23471–23479.

[55]

Yang, K. W.; Jiang, J. W. Computational design of a metal-based frustrated Lewis pair on defective UiO-66 for CO2 hydrogenation to methanol. J. Mater. Chem. A 2020, 8, 22802–22815.

[56]

Rueda-Navarro, C. M.; Ferrer, B.; Baldoví, H. G.; Navalón, S. Photocatalytic hydrogen production from glycerol aqueous solutions as sustainable feedstocks using Zr-based UiO-66 materials under simulated sunlight irradiation. Nanomaterials (Basel) 2022, 12, 3808.

[57]

Feng, X.; Jena, H. S.; Krishnaraj, C.; Arenas-Esteban, D.; Leus, K.; Wang, G. B.; Sun, J. M.; Rüscher, M.; Timoshenko, J.; Cuenya, B. R. et al. Creation of exclusive artificial cluster defects by selective metal removal in the (Zn, Zr) mixed-metal UiO-66. J. Am. Chem. Soc. 2021, 143, 21511–21518.

[58]

Wei, R. P.; Gaggioli, C. A.; Li, G. Z.; Islamoglu, T.; Zhang, Z. X.; Yu, P.; Farha, O. K.; Cramer, C. J.; Gagliardi, L.; Yang, D. et al. Tuning the properties of Zr6O8 nodes in the metal organic framework UiO-66 by selection of node-bound ligands and linkers. Chem. Mater. 2019, 31, 1655–1663.

[59]

Svane, K. L.; Bristow, J. K.; Gale, J. D.; Walsh, A. Vacancy defect configurations in the metal-organic framework UiO-66: Energetics and electronic structure. J. Mater. Chem.A 2018, 6, 8507–8513.

[60]

Devautour-Vinot, S.; Maurin, G.; Serre, C.; Horcajada, P.; Da Cunha, D. P.; Guillerm, V.; De Souza Costa, A.; Taulelle, F.; Martineau, C. Structure and dynamics of the functionalized MOF type UiO-66(Zr): NMR and dielectric relaxation spectroscopies coupled with DFT calculations. Chem. Mater. 2012, 24, 2168–2177.

[61]

Fang, Z. L.; Bueken, B.; De Vos, D. E.; Fischer, R. A. Defect-engineered metal-organic frameworks. Angew. Chem., Int. Ed. Eng. 2015, 54, 7234–7254.

[62]

Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Defective metal-organic frameworks. Adv. Mater. 2018, 30, 1704501.

[63]

Al-Azri, Z. H. N.; Chen, W. T.; Chan, A.; Jovic, V.; Ina, T.; Idriss, H.; Waterhouse, G. I. N. The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M = Pd, Pt, Au) in different alcohol-water mixtures. J. Catal. 2015, 329, 355–367.

[64]

Dai, S.; Montero-Lanzuela, E.; Tissot, A.; Baldoví, H. G.; García, H.; Navalón, S.; Serre, C. Room temperature design of Ce(IV)-MOFs: From photocatalytic HER and OER to overall water splitting under simulated sunlight irradiation. Chem. Sci. 2023, 14, 3451–3461.

[65]

Semerci, T. G.; Melillo, A.; Mutlu, Y. Ç.; Garcia, H. Band alignment of PCN-222 via selection of the metal porphyrin linker for sunlight driven photocatalytic overall water splitting. Catal. Today 2023, 423, 113931.

[66]

Manickam-Periyaraman, P.; Espinosa, J. C.; Ferrer, B.; Subramanian, S.; Álvaro, M.; García, H.; Navalón, S. Bimetallic iron-copper oxide nanoparticles supported on nanometric diamond as efficient and stable sunlight-assisted Fenton photocatalyst. Chem. Eng. J. 2020, 393, 124770.

[67]

Melillo, A.; Cabrero-Antonino, M.; Navalón, S.; Álvaro, M.; Ferrer, B.; García, H. Enhancing visible light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Appl. Catal. B Environ. 2020, 278, 119345.

[68]

Daliran, S.; Oveisi, A.R.; Peng, Y.; López-Magano, A.; Khajeh, M.; Mas-Ballesté, R.; Alemán, J.; Luque, R.; Garcia, H. Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chem. Soc. Rev., 2022, 51, 7810–7882

[69]

Salcedo-Abraira, P.; Babaryk, A. A.; Montero-Lanzuel, E.; Contreras-Almengor, O. R.; Cabrero-Antonino, M.; Grape, E. S.; Willhammar, T.; Navalón, S.; Elkäim, E.; García, H. et al. A novel porous Ti-squarate as efficient photocatalyst in the overall water splitting reaction under simulated sunlight irradiation. Adv. Mater. 2021, 33, 2106627.

[70]

Gikonyo, B.; Montero-Lanzuela, E.; Baldovi, H. G.; De, S.; Journet, C.; Devic, T.; Guillou, N.; Tiana, D.; Navalon, S.; Fateeva, A. Mixed-metal Zr/Ti MIL-173 porphyrinic metal-organic frameworks as efficient photocatalysts towards solar-driven overall water splitting. J. Mater. Chem. A 2022, 10, 24938–24950.

[71]

Hu, H. H.; Wang, Z. Y.; Cao, L. Y.; Zeng, L. Z.; Zhang, C. K.; Lin, W. B.; Wang, C. Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 2021, 13, 358–366.

[72]

Salcedo-Abraira, P.; Vilela, S. M. F.; Babaryk, A. A.; Cabrero-Antonino, M.; Gregorio, P.; Salles, F.; Navalón, S.; García, H.; Horcajada, P. Nickel phosphonate MOF as efficient water splitting photocatalyst. Nano Res. 2021, 14, 450–457.

[73]

Portillo, A. S.; Baldoví, H. G.; Fernandez, M. T. G.; Navalón, S.; Atienzar, P.; Ferrer, B.; Alvaro, M.; Garcia, H.; Li, Z. H. Ti as mediator in the photoinduced electron transfer of mixed-metal NH2-UiO-66(Zr/Ti): Transient absorption spectroscopy study and application in photovoltaic cell. J. Phys. Chem. C 2017, 121, 7015–7024.

[74]

García-Baldoví, A.; Del Angel, R.; Mouchaham, G.; Liu, S. P.; Fan, D.; Maurin, G.; Navalón, S.; Serre, C.; Garcia, H. Active site imprinting on Ti oxocluster metal-organic frameworks for photocatalytic hydrogen release from formic acid. Energy Environ. Sci. 2023, 16, 167–177.

[75]

Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

[76]

Sun, D. R.; Fu, Y. H.; Liu, W. J.; Ye, L.; Wang, D. K.; Yang, L.; Fu, X. Z.; Li, Z. H. Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: Towards a better understanding of photocatalysis on metal-organic frameworks. Chem. -Eur. J. 2013, 19, 14279–14285.

[77]

Xiao, J. D.; Shang, Q. C.; Xiong, Y. J.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: The platinum location matters. Angew. Chem., Int. Ed. 2016, 55, 9389–9393.

[78]

Yu, X. M.; Li, J.; Du, M. H.; Song, X. J.; Huang, H. L.; Nie, L. Adaptive lattice-matched MOF and COF core−shell heterostructure for carbon dioxide photoreduction. Cell Rep. Phys. Sci. 2023, 4, 101657.

[79]

He, Y. Q.; Li, C. G.; Chen, X. B.; Shi, Z.; Feng, S. H. Visible-light-responsive UiO-66(Zr) with defects efficiently promoting photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2022, 14, 28977–28984.

[80]

Long, J. L.; Wang, S. B.; Ding, Z. X.; Wang, S. C.; Zhou, Y. G.; Huang, L.; Wang, X. X. Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem. Commun. 2012, 48, 11656–11658.

[81]

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

[82]

Wei, R.; Gaggioli, C.A.; Li, G.; Islamoglu, T.; Zhang, Z.; Yu, P.; Farha, O.K.; Cramer, C.J.; Gagliardi, L.; Yang, D.; Gates, B.C. Tuning the properties of Zr6O8 nodes in the metal organic framework UiO-66 by selection of node-bound ligands and linkers. Chem. Mater. 2019, 31, 1655–1663

[83]

Zhou, G.; Wang, P. F.; Li, H.; Hu, B.; Sun, Y.; Huang, R.; Liu, L. Z. Spin-sate reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction. Nat. Commun. 2021, 12, 4827.

[84]

Martin, R. L. Natural transition orbitals. J. Chem. Phys. 2003, 118, 4775–4777.

Nano Research
Pages 4134-4150
Cite this article:
Rueda-Navarro CM, Cabrero-Antonino M, Escamilla P, et al. Solar-assisted photocatalytic water splitting using defective UiO-66 solids from modulated synthesis. Nano Research, 2024, 17(5): 4134-4150. https://doi.org/10.1007/s12274-023-6351-1
Topics:

999

Views

4

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 21 August 2023
Revised: 10 November 2023
Accepted: 20 November 2023
Published: 29 December 2023
© Tsinghua University Press 2023
Return