The selective oxidation of methane under mild conditions remains the “Holy Grail of Catalysis”. The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers. Copper nanoparticles were loaded onto TiO2 nanofibers using the photo-deposition method. The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions. Compared with previously reported catalysts, it delivers a superior performance of up to 2510.7 mmol·gCu−1·h−1 productivity with a selectivity of around 100% at 80 °C for 5 min. Microstructure characterizations and density functional theory (DFT) calculations indicate that TiO2 in the mixed phase of anatase and rutile significantly increases the Cu+/Cu0 ratio of the supported Cu species, and this ratio is linearly related to the formation rate of oxygen-containing species. The CuI site promotes the generation of active O species from H2O2 dissociation on Cu2O (111). These active O species reduce the energy barrier for breaking the C–H bond of CH4, thus boosting the catalytic activity. The methane conversion mechanism was proposed as a methyl radical pathway to form CH3OH and CH3OOH, and then the generated CH3OH is further oxidized to HOCH2OOH.
Sun, X.; Chen, X. Y.; Fu, C.; Yu, Q. B.; Zheng, X. S.; Fang, F.; Liu, Y. X.; Zhu, J. F.; Zhang, W. H.; Huang, W. X. Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates. Nat. Commun. 2022, 13, 6677.
Chen, F. Q.; Zheng, W.; Zhu, N.; Cheng, D. G.; Zhan, X. L. Oxidative coupling of methane over Na-W-Mn-Zr-S-P/SiO2 catalyst: Effect of S, P addition on the catalytic performance. Catal. Lett. 2008, 125, 348–351.
Lunsford, J. H. The catalytic oxidative coupling of methane. Angew. Chem. Int. Ed. Engl. 1995, 34, 970–980.
Kwapien, K.; Paier, J.; Sauer, J.; Geske, M.; Zavyalova, U.; Horn, R.; Schwach, P.; Trunschke, A.; Schlögl, R. Sites for methane activation on lithium-doped magnesium oxide surfaces. Angew. Chem., Int. Ed. 2014, 53, 8774–8778.
Xu, Y. D.; Bao, X. H.; Lin, L. W. Direct conversion of methane under nonoxidative conditions. J. Catal. 2003, 216, 386–395.
Hutchings, G. J.; Scurrell, M. S.; Woodhouse, J. R. Oxidative coupling of methane using oxide catalysts. Chem. Soc. Rev. 1989, 18, 251–283.
Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616–619.
Yu, X.; Zholobenko, V. L.; Moldovan, S.; Hu, D.; Wu, D.; Ordomsky, V. V.; Khodakov, A. Y. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 2020, 5, 511–519.
Schulz, H. Short history and present trends of Fischer-Tropsch synthesis. Appl. Catal. A: Gen. 1999, 186, 3–12.
Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 2017, 356, 523–527.
Chen, X. W.; Peng, M.; Cai, X. B.; Chen, Y. L.; Jia, Z. M.; Deng, Y. C.; Mei, B. B.; Jiang, Z.; Xiao, D. Q.; Wen, X. D. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 2021, 12, 2664.
Chen, X. W.; Qin, X. T.; Jiao, Y. Y.; Peng, M.; Diao, J. Y.; Ren, P. J.; Li, C. Y.; Xiao, D. Q.; Wen, X. D.; Jiang, Z. et al. Structure-dependence and metal-dependence on atomically dispersed Ir catalysts for efficient n-butane dehydrogenation. Nat. Commun. 2023, 14, 2588.
Ab Rahim, M. H.; Forde, M. M.; Jenkins, R. L.; Hammond, C.; He, Q.; Dimitratos, N.; Lopez-Sanchez, J. A.; Carley, A. F.; Taylor, S. H.; Willock, D. J. et al. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 1280–1284.
Hammond, C.; Forde, M. M.; Ab Rahim, M. H.; Thetford, A.; He, Q.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Dummer, N. F.; Murphy, D. M. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem., Int. Ed. 2012, 51, 5129–5133.
Armstrong, R. D.; Peneau, V.; Ritterskamp, N.; Kiely, C. J.; Taylor, S. H.; Hutchings, G. J. The role of copper speciation in the low temperature oxidative upgrading of short chain alkanes over Cu/ZSM-5 catalysts. ChemPhysChem 2018, 19, 469–478.
Zhao, W. S.; Shi, Y. N.; Jiang, Y. H.; Zhang, X. F.; Long, C.; An, P. F.; Zhu, Y. F.; Shao, S. X.; Yan, Z.; Li, G. D. et al. Fe-O clusters anchored on nodes of metal-organic frameworks for direct methane oxidation. Angew. Chem., Int. Ed. 2021, 60, 5811–5815.
Yang, L.; Huang, J. X.; Ma, R.; You, R.; Zeng, H.; Rui, Z. B. Metal-organic framework-derived IrO2/CuO catalyst for selective oxidation of methane to methanol. ACS Energy Lett. 2019, 4, 2945–2951.
Shen, Q. K.; Cao, C. Y.; Huang, R. K.; Zhu, L.; Zhou, X.; Zhang, Q. H.; Gu, L.; Song, W. G. Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild condition. Angew. Chem., Int. Ed. 2020, 59, 1216–1219.
Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.
Mahlaba, S. V. L.; Hytoolakhan Lal Mahomed, N.; Govender, A.; Guo, J. F.; Leteba, G. M.; Cilliers, P. L.; van Steen, E. Platinum-catalysed selective aerobic oxidation of methane to formaldehyde in the presence of liquid water. Angew. Chem., Int. Ed. 2022, 61, e202206841.
Zhang, P. Y.; Liu, H. Y.; Li, X. M. Photo-reduction synthesis of Cu nanoparticles as Plasmon-driven non-semiconductor photocatalyst for overall water splitting. Appl. Surf. Sci. 2021, 535, 147720.
Wu, X. Y.; Zeng, Y.; Liu, H. C.; Zhao, J. Q.; Zhang, T. R.; Wang, S. L. Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm). Nano Res. 2021, 14, 4584–4590.
Guo, X. Y.; Hu, Z.; Lv, J. X.; Li, H.; Zhang, Q. H.; Gu, L.; Zhou, W.; Zhang, J. W.; Hu, S. Fine-tuning of Pd-Rh core–shell catalysts by interstitial hydrogen doping for enhanced methanol oxidation. Nano Res. 2022, 15, 1288–1294.
Guo, H. M.; Wu, L.; Nie, S. Y.; Yang, D. R.; Wang, X. Ultrathin zirconium-porphyrin based nanobelts as photo-coupled electrocatalysis for CH4 oxidation to CO. Nano Res. 2023, 16, 12641–12646.
Zeng, F.; Zhang, J.; Xu, R.; Zhang, R. J.; Ge, J. P. Highly dispersed Ni/MgO-mSiO2 catalysts with excellent activity and stability for dry reforming of methane. Nano Res. 2022, 15, 5004–5013.
Nie, J.; Patrocinio, A. O. T.; Hamid, S.; Sieland, F.; Sann, J.; Xia, S.; Bahnemann, D. W.; Schneider, J. New insights into the plasmonic enhancement for photocatalytic H2 production by Cu-TiO2 upon visible light illumination. Phys. Chem. Chem. Phys. 2018, 20, 5264–5273.
DeSario, P. A.; Pietron, J. J.; Brintlinger, T. H.; McEntee, M.; Parker, J. F.; Baturina, O.; Stroud, R. M.; Rolison, D. R. Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO2 nanoarchitectures. Nanoscale 2017, 9, 11720–11729.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Qiu, X. Q.; Miyauchi, M.; Sunada, K.; Minoshima, M.; Liu, M.; Lu, Y.; Li, D.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y. et al. Hybrid Cu x O/TiO2 nanocomposites as risk-reduction materials in indoor environments. ACS Nano 2012, 6, 1609–1618.
Zhang, Q. Y.; Li, Y.; Ackerman, E. A.; Gajdardziska-Josifovska, M.; Li, H. L. Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Appl. Catal. A: Gen. 2011, 400, 195–202.
Deiana, C.; Fois, E.; Coluccia, S.; Martra, G. Surface structure of TiO2 P25 nanoparticles: Infrared study of hydroxy groups on coordinative defect sites. J. Phys. Chem. C 2010, 114, 21531–21538.
Zhang, J.; Li, M. J.; Feng, Z. C.; Chen, J.; Li, C. UV Raman spectroscopic study on TiO2. I. phase transformation at the surface and in the bulk. J. Phys. Chem. B 2006, 110, 927–935.
Espinós, J. P.; Morales, J.; Barranco, A.; Caballero, A.; Holgado, J. P.; González-Elipe, A. R. Interface effects for Cu, CuO, and Cu2O Deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J. Phys. Chem. B 2002, 106, 6921–6929.
Dan, Z. H.; Yang, Y. L.; Qin, F. X.; Wang, H.; Chang, H. Facile fabrication of Cu2O nanobelts in ethanol on nanoporous Cu and their photodegradation of methyl orange. Materials 2018, 11, 446.
Zhen, W. L.; Jiao, W. J.; Wu, Y. Q.; Jing, H. W.; Lu, G. X. The role of a metallic copper interlayer during visible photocatalytic hydrogen generation over a Cu/Cu2O/Cu/TiO2 catalyst. Catal. Sci. Technol. 2017, 7, 5028–5037.
Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.
Zhou, J. J.; Pan, F.; Yao, Q. F.; Zhu, Y. Q.; Ma, H. R.; Niu, J. F.; Xie, J. P. Achieving efficient and stable electrochemical nitrate removal by in-situ reconstruction of Cu2O/Cu electroactive nanocatalysts on Cu foam. Appl. Catal. B: Environ. 2022, 317, 121811.
Jin, Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C. T.; Meng, X. J.; Yang, H. Q.; Mesters, C. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 2020, 367, 193–197.
Fang, G. Q.; Hu, J. N.; Tian, L. C.; Liang, J. X.; Lin, J.; Li, L.; Zhu, C.; Wang, X. D. Zirconium-oxo nodes of MOFs with tunable electronic properties provide effective ·OH species for enhanced methane hydroxylation. Angew. Chem., Int. Ed. 2022, 61, e202205077.
Fan, J. C.; Liang, S. X.; Zhu, K. X.; Mao, J.; Cui, X. J.; Ma, C.; Yu, L.; Deng, D. H. Boosting room-temperature conversion of methane via confining Cu atoms in ultrathin Ru nanosheets. Chem Catal. 2022, 2, 2253–2261.
Li, W. C.; Li, Z.; Zhang, H.; Liu, P. X.; Xie, Z. A.; Song, W. Y.; Liu, B. J.; Zhao, Z. Efficient catalysts of surface hydrophobic Cu-BTC with coordinatively unsaturated Cu(I) sites for the direct oxidation of methane. Proc. Natl. Acad. Sci. USA 2023, 120, e2206619120.
Wu, L. N.; Tian, Z. Y.; Qin, W. DFT study on CO catalytic oxidation mechanism on the defective Cu2O (111) surface. J. Phys. Chem. C 2018, 122, 16733–16740.