Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The impact of interfacial charge on catalytic performance of supported-metal-cluster (SMC) heterostructures remains unclear, hindering efforts to develop high-performance SMC catalysts. Herein we systematically investigated interfacial charge effects of SMCs using a model system of graphene-supported gold-nanoclusters (AuNCs/rGO) for azo hydrogenation. Three types of SMCs with different interfacial charges were synthesized by anchoring electropositive 2-aminoethanethiol (CSH), amphoteric cysteine (Cys), and electronegative 3-mercaptopropionic-acid (MPA) onto AuNCs/rGO, respectively. All three SMCs exhibited high and selective catalytic activity to azo-hydrogenation in four representative azo dyes. The catalytic activity of Cys@AuNCs/rGO was lower than that of CSH@AuNCs/rGO but higher than that of MPA@AuNCs/rGO. However, the cyclic stability of Cys@AuNCs/rGO was inferior to that of both CSH@AuNCs/rGO and MPA@AuNCs/rGO. Further mechanistic studies revealed that amino ligands modified CSH@AuNCs and Cys@AuNCs agglomerated into large-size gold nanoparticles on rGO surface during catalytic reaction under NaBH4 action, leading to reduced efficiency and cyclic stability. Conversely, non-amino ligand modified MPA@AuNCs only partially detached from rGO surface without agglomeration, resulting in better cyclic stability. Protection of amino groups in ligands such as modifying –NH3+ group in Cys into imine to form N-isobutyryl-L-cysteine (NIBC) substantially improved the cyclic stability while maintaining the high activity in the NIBC@AuNCs/rGO catalyst system. Our work provides an approach for developing a highly-active and stable SMC heterostructure catalyst via manipulating interfacial charges in SMC.
Dong, C. Y.; Li, Y. L.; Cheng, D. Y.; Zhang, M. T.; Liu, J. J.; Wang, Y. G.; Xiao, D. Q.; Ma, D. Supported metal clusters: Fabrication and application in heterogeneous catalysis. ACS Catal. 2020, 10, 11011–11045.
Zhang, L.; Zhu, J.; Li, X.; Mu, S.; Verpoory, F.; Xue, J.; Kou, Z.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.
Xu, L.; Papanikolaou, K. G.; Lechner, B. A. J.; Je, L.; Somorjai, G. A.; Salmeron, M.; Mavrikakis, M. Formation of active sites on transition metals through reaction-driven migration of surface atoms. Science 2023, 380, 70–76.
Corma, A.; Concepción, P.; Boronat, M.; Sabater, M. J.; Navas, J.; Yacaman, M. J.; Larios, E.; Posadas, A.; López-Quintela, M. A.; Buceta, D. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 2013, 5, 775–781.
Deng, Y. C.; Guo, Y.; Jia, Z. M.; Liu, J. C.; Guo, J. Q.; Cai, X. B.; Dong, C. Y.; Wang, M.; Li, C. Y.; Diao, J. Y. et al. Few-atom Pt ensembles enable efficient catalytic cyclohexane dehydrogenation for hydrogen production. J. Am. Chem. Soc. 2022, 144, 3535–3542.
Wu, Y. Z.; Wang, L.; Bo, T.; Chai, Z. F.; Gibson, J. K.; Shi, W. Q. Boosting hydrogen evolution in neutral medium by accelerating water dissociation with Ru clusters loaded on Mo2CT x MXene. Adv. Funct. Mater. 2023, 33, 2214375.
Liu, G. H.; Nie, T. Q.; Wang, H. J.; Shen, T. Y.; Sun, X. L.; Bai, S.; Zheng, L. R.; Song, Y. F. Size sensitivity of supported palladium species on layered double hydroxides for the electro-oxidation dehydrogenation of hydrazine: From nanoparticles to nanoclusters and single atoms. ACS Catal. 2022, 12, 10711–10717.
Li, Y. R.; Yan, K. L.; Cao, Y. Q.; Ge, X. H.; Zhou, X. G.; Yuan, W. K.; Chen, D.; Duan, X. Z. Mechanistic and atomic-level insights into semihydrogenation catalysis to light olefins. ACS Catal. 2022, 12, 12138–12161.
Muravev, V.; Parastaev, A.; van den Bosch, Y.; Ligt, B.; Claes, N.; Bals, S.; Kosinov, N.; Hensen, E. J. M. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts. Science 2023, 380, 1174–1179.
Argo, A. M.; Odzak, J. F.; Lai, F. S.; Gates, B. C. Observation of ligand effects during alkene hydrogenation catalysed by supported metal clusters. Nature 2002, 415, 623–626.
Fu, J. L.; Ren, D. Z.; Xiao, M. L.; Wang, K.; Deng, Y. P.; Luo, D.; Zhu, J. B.; Wen, G. B.; Zheng, Y.; Bai, Z. Y. et al. Manipulating Au-CeO2 interfacial structure toward ultrahigh mass activity and selectivity for CO2 reduction. ChemSusChem 2020, 13, 6621–6628.
Chevrier, D. M.; Raich, L.; Rovira, C.; Das, A.; Luo, Z. T.; Yao, Q. F.; Chatt, A.; Xie, J. P.; Jin, R. C.; Akola, J. et al. Molecular-scale ligand effects in small gold-thiolate nanoclusters. J. Am. Chem. Soc. 2018, 140, 15430–15436.
Zhou, Y. H.; Wang, Z. Q.; Ye, B.; Huang, X. B.; Deng, H. Ligand effect over gold nanocatalysts towards enhanced gas-phase oxidation of alcohols. J. Catal. 2021, 400, 274–282.
Brindle, J.; Sufyan, S. A.; Nigra, M. M. Support, composition, and ligand effects in partial oxidation of benzyl alcohol using gold-copper clusters. Catal. Sci. Technol. 2022, 12, 3846–3855.
Zhang, J.; Deo, S.; Janik, M. J.; Medlin, J. W. Control of molecular bonding strength on metal catalysts with organic monolayers for CO2 Reduction. J. Am. Chem. Soc. 2020, 142, 5184–5193.
Liu, Q. G.; Yang, X. F.; Huang, Y. Q.; Xu, S. T.; Su, X.; Pan, X. L.; Xu, J. M.; Wang, A. Q.; Liang, C. H.; Wang, X. K. et al. A Schiff base modified gold catalyst for green and efficient H2 production from formic acid. Energy Environ. Sci. 2015, 8, 3204–3207.
Kaźmierczak, K.; Ramamoorthy, R. K.; Moisset, A.; Viau, G.; Viola, A.; Giraud, M.; Peron, J.; Sicard, L.; Piquemal, J. Y.; Besson, M. et al. Importance of the decoration in shaped cobalt nanoparticles in the acceptor-less secondary alcohol dehydrogenation. Catal. Sci. Technol. 2020, 10, 4923–4937.
Xiong, Y.; Wan, H.; Islam, M.; Wang, W.; Xie, L. L.; Lü, S. F.; Kabir, S. M. F.; Liu, H. H.; Mahmud, S. Hyaluronate macromolecules assist bioreduction (AuIII to Au0) and stabilization of catalytically active gold nanoparticles for azo contaminated wastewater treatment. Environ. Technol. Innov. 2021, 24, 102053.
Wan, H.; Liu, Z. H.; He, Q. J.; Wei, D.; Mahmud, S.; Liu, H. H. Bioreduction (AuIII to Au0) and stabilization of gold nanocatalyst using Kappa carrageenan for degradation of azo dyes. Int. J. Biol. Macromol. 2021, 176, 282–290.
Liu, Y.; Huang, L. P.; Mahmud, S.; Liu, H. H. Gold Nanoparticles biosynthesized using Ginkgo biloba leaf aqueous extract for the decolorization of azo-dyes and fluorescent detection of Cr(VI). J. Clust. Sci. 2020, 31, 549–560.
Antony, A. M.; Kandathil, V.; Kempasiddaiah, M.; Shwetharani, R.; Balakrishna, R. G.; El-Bahy, S. M.; Hessien, M. M.; Mersal, G. A. M.; Ibrahim, M. M.; Patil, S. A. Graphitic carbon nitride supported palladium nanocatalyst as an efficient and sustainable catalyst for treating environmental contaminants and hydrogen evolution reaction. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 647, 129116.
Ecer, Ü.; Şahan, T.; Zengin, A. Synthesis and characterization of an efficient catalyst based on MoS2 decorated magnetic pumice: An experimental design study for methyl orange degradation. J. Environ. Chem. Eng. 2021, 9, 105265.
Vijayan, R.; Joseph, S.; Mathew, B. Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnol. 2018, 12, 850–856.
Chen, J. H.; Wei, D.; Liu, Y.; Xiong, Y.; Peng, J. J.; Mahmud, S.; Liu, H. H. Gold/ Konjac glucomannan bionanocomposites for catalytic degradation of mono-azo and di-azo dyes. Inorg. Chem. Commun. 2020, 120, 108156.
Naseem, K.; Ali, F.; Tahir, M. H.; Afaq, M.; Yasir, H. M.; Ahmed, K.; Aljuwayid, A. M.; Habila, M. A. Investigation of catalytic potential of sodium dodecyl sulfate stabilized silver nanoparticles for the degradation of methyl orange dye. J. Mol. Struct. 2022, 1262, 132996.
Tian, C.; Kasavajhala, K.; Belfon, K. A. A.; Raguette, L.; Huang, H.; Migues, A. N.; Bickel, J.; Wang, Y. Z.; Pincay, J.; Wu, Q. et al. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 2020, 16, 528–552.
Jung, J.; Kang, S.; Han, Y. K. Ligand effects on the stability of thiol-stabilized gold nanoclusters: Au25(SR)18−, Au38(SR)24, and Au102(SR)44. Nanoscale 2012, 4, 4206–4210.
Ackerson, C. J.; Jadzinsky, P. D.; Kornberg, R. D. Thiolate ligands for synthesis of water-soluble gold clusters. J. Am. Chem. Soc. 2005, 127, 6550–6551.
Deng, H. H.; Huang, K. Y.; Xiu, L.; Sun, W. M.; Yao, Q. F.; Fang, X. Y.; Huang, X.; Noreldeen, H. A. A.; Peng, H. P.; Xie, J. P. et al. Bis-Schiff base linkage-triggered highly bright luminescence of gold nanoclusters in aqueous solution at the single-cluster level. Nat. Commun. 2022, 13, 3381.
Ding, Y.; Maitra, S.; Wang, C.; Halder, S.; Zheng, R.; Barakat, T.; Roy, S.; Chen, L.; Su, B. Vacancy defect engineering in semiconductors for solar light-driven environmental remediation and sustainable energy production. Interdiscip. Mater. 2022, 213–255.
Wang, L.; Hao. X,; Gao, Z.; Yang, Z.; Long, Y.; Luo, M.; Guan, J. Artificial nanomotors: fabrication, locomotion characterization, motion manipulation, and biomedical applications. Interdiscip. Mater. 2022, 1, 256–280.