AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Edge dislocation-induced strains break the limit of PtNi alloys in boosting Pt mass activity for efficient alkaline hydrogen evolution

Miao Zhou1Yao Zhao2Zhanwei Liu2( )Xueru Zhao3( )Enzuo Liu4( )Liyang Xiao1Pengfei Yin1Cunku Dong1Hui Liu1Xiwen Du1Jing Yang1( )
New Energy Materials Institute, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
Advanced Metallic Materials Institute, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Show Author Information

Graphical Abstract

PtNi alloys with different Pt/Ni ratios and edge dislocations were synthesized. The extra strain induced by edge dislocations accurately adjusted the d-band centers of Ni and Pt, significantly boosting the Pt mass activities of PtxNiy alloy catalysts for alkaline hydrogen production.

Abstract

Creating lattice defects and alloying to produce strain effect in Pt-based bimetallic alloys are both effective methods to optimize the crystal and electronic structure and improve the electrocatalytic performance. Unfortunately, the principles that govern the alkaline hydrogen evolution reaction (HER) performance remain unclear, which is detrimental to the rational design of efficient Pt-based electrocatalysts. Herein, PtNi alloys with different Pt/Ni ratios and edge dislocations were synthesized, and the effects of Pt/Ni composition and edge dislocations on the alkaline HER electrocatalytic activity of PtNi alloys were systematically studied. Combined experimental and theoretical investigations reveal that tuning Pt/Ni ratio results in only 1.1 times enhancements in Pt mass activity, whereas edge dislocations-induced extra tensile strain on Ni site and compressive strain on Pt site further boost the alkaline HER intrinsic activity at all Pt/Ni ratios. Impressively, the introduction of edge dislocations in PtNi alloys could break the limit of alloying in boosting Pt mass activity and result in up to 13.7-fold enhancement, in the case that Pt and Ni contents are nearly identical and thus edge dislocation density reaches the maximum. Fundamental mechanism studies demonstrate that the edge dislocation strategy could make a breakthrough in facilitating water dissociation kinetics of PtNi alloys.

Electronic Supplementary Material

Download File(s)
12274_2023_6359_MOESM1_ESM.pdf (2.4 MB)

References

[1]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[2]

Wang, P. T.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S. J.; Lu, G.; Yao, J. L.; Huang, X. Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 2017, 8, 14580.

[3]

Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum–nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859–12863.

[4]

Mao, F. X.; Wang, Z. G.; Cheng, L. M.; Li, X. X.; Sun, K. Z.; Liu, P. F.; Yang, H. G. Electrodeposited multimetal alloyed NiMoCo on Ni mesh for efficient alkaline hydrogen evolution reaction. Energy Fuels 2023, 23, 18137–18144.

[5]

Raja, D. S.; Cheng, C. C.; Ting, Y. C.; Lu, S. Y. NiMo-MOF-derived carbon-armored Ni4Mo alloy of an interwoven nanosheet structure as an outstanding pH-universal catalyst for hydrogen evolution reaction at high current densities. ACS Appl. Mater. & Interfaces 2023, 15, 20130–20140.

[6]

Song, T.; Zhang, X.; Xie, C.; Yang, P. N-doped carbon nanotubes enhanced charge transport between Ni nanoparticles and g-C3N4 nanosheets for photocatalytic H2 generation and 4-nitrophenol removal. Carbon 2023, 210, 118052.

[7]

Marini, S.; Salvi, P.; Nelli, P.; Pesenti, R.; Villa, M.; Kiros, Y. Stable and inexpensive electrodes for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2013, 38, 11484–11495.

[8]

King, L. A.; Hubert, M. A.; Capuano, C.; Manco, J.; Danilovic, N.; Valle, E.; Hellstern, T. R.; Ayers, K.; Jaramillo, T. F. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 2019, 14, 1071–1074.

[9]

Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

[10]

Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529–B1536.

[11]

Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

[12]

Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.

[13]

Xing, Z. C.; Han, C.; Wang, D. W.; Li, Q.; Yang, X. R. Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal. 2017, 7, 7131–7135.

[14]

Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

[15]

Dinh, C. T.; Jain, A.; De Arquer, F. P. G.; De Luna, P.; Li, J.; Wang, N.; Zheng, X.; Cai, J.; Gregory, B. Z.; Voznyy, O. et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 2018, 4, 107–114.

[16]

Sun, J. P.; Zhang, Z. S.; Meng, X. C. Low-Pt supported on MOF-derived Ni(OH)2 with highly-efficiently electrocatalytic seawater splitting at high current density. Appl. Catal. B-Environ. 2023, 331, 122703.

[17]

Kuang, P. Y.; Ni, Z. R.; Zhu, B. C.; Lin, Y.; Yu, J. G. Modulating the d-band center enables ultrafine Pt3Fe alloy nanoparticles for pH-universal hydrogen evolution reaction. Adv. Mater. 2023, 35, 2303030.

[18]

Yu, W. H.; Zhang, Y. Y.; Qin, Y. N.; Zhang, D.; Liu, K.; Bagliuk, G. A.; Lai, J. P.; Wang, L. High-density frustrated Lewis pair for high-performance hydrogen evolution. Adv. Energy Mater. 2023, 13, 2203136.

[19]

Zhou, M.; Li, H. F.; Long, A. C.; Zhou, B.; Lu, F.; Zhang, F. C.; Zhan, F.; Zhang, Z. X.; Xie, W. W.; Zeng, X. H. et al. Modulating 3d orbitals of Ni atoms on Ni-Pt edge sites enables highly-efficient alkaline hydrogen evolution. Adv. Energy Mater. 2021, 11, 2101789.

[20]

Jiang, Y.; Wu, X. Q.; Yan, Y. C.; Luo, S.; Li, X.; Huang, J. B.; Zhang, H.; Yang, D. R. Coupling PtNi ultrathin nanowires with MXenes for boosting electrocatalytic hydrogen evolution in both acidic and alkaline solutions. Small 2019, 15, 1805474.

[21]

Liu, Z. J.; Qi, J.; Liu, M. X.; Zhang, S. M.; Fan, Q. K.; Liu, H. P.; Liu, K.; Zheng, H. Q.; Yin, Y. D.; Gao, C. B. Aqueous synthesis of ultrathin platinum/non-noble metal alloy nanowires for enhanced hydrogen evolution activity. Angew. Chem., Int. Ed. 2018, 57, 11678–11682.

[22]

Li, Z.; Fu, J. Y.; Feng, Y.; Dong, C. K.; Liu, H.; Du, X. W. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat. Catal. 2019, 2, 1107–1114.

[23]

Liu, S. L.; Shen, Y.; Zhang, Y.; Cui, B. H.; Xi, S. B.; Zhang, J. F.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Extreme environmental thermal shock induced dislocation-rich Pt nanoparticles boosting hydrogen evolution reaction. Adv. Mater. 2022, 34, 2106973.

[24]

Zhou, M.; Cheng, C. Q.; Dong, C. K.; Xiao, L. Y.; Zhao, Y.; Liu, Z. W.; Zhao, X. R.; Sasaki, K.; Cheng, H.; Du, X. W. et al. Dislocation network-boosted PtNi nanocatalysts welded on nickel foam for efficient and durable hydrogen evolution at ultrahigh current densities. Adv. Energy Mater. 2023, 13, 2202595.

[25]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[26]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[27]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[28]

Hÿtch, M. J.; Houdellier, F. Mapping stress and strain in nanostructures by high-resolution transmission electron microscopy. Microelectron. Eng. 2007, 84, 460–463.

[29]

Liu, S. L.; Hu, Z.; Wu, Y. Z.; Zhang, J. F.; Zhang, Y.; Cui, B. H.; Liu, C.; Hu, S.; Zhao, N. Q.; Han, X. P. et al. Dislocation-strained IrNi alloy nanoparticles driven by thermal shock for the hydrogen evolution reaction. Adv. Mater. 2020, 32, 2006034.

[30]

Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

[31]

Deivaraj, T. C.; Chen, W. X.; Lee, J. Y. Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. J. Mater. Chem. 2003, 13, 2555–2560.

[32]

Wang, B.; Xiong, L. F.; Hao, H. J.; Cai, H. R.; Gao, P. F.; Liu, F. Z.; Yu, X. J.; Wu, C.; Yang, S. C. The “electric-dipole” effect of Pt–Ni for enhanced catalytic dehydrogenation of ammonia borane. J. Alloys Compds. 2020, 844, 156253.

[33]

Zhang, C.; Liang, X.; Xu, R. N.; Dai, C. N.; Wu, B.; Yu, G. Q.; Chen, B. H.; Wang, X. L.; Liu, N. H2 in situ inducing strategy on Pt surface segregation over low Pt doped PtNi5 nanoalloy with superhigh alkaline HER activity. Adv. Funct. Mater. 2021, 31, 2008298.

[34]

Kong, F. P.; Ren, Z. H.; Banis, M. N.; Du, L.; Zhou, X.; Chen, G. Y.; Zhang, L.; Li, J. J.; Wang, S. Z.; Li, M. S. et al. Active and stable Pt–Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering. ACS Catal. 2020, 10, 4205–4214.

[35]

Chen, Q.; Wei, B.; Wei, Y.; Zhai, P. B.; Liu, W.; Gu, X. K.; Yang, Z. L.; Zuo, J. H.; Zhang, R. F.; Gu, X. J. Synergistic effect in ultrafine PtNiP nanowires for highly efficient electrochemical hydrogen evolution in alkaline electrolyte. Appl. Catal. B Environ. 2022, 301, 120754.

[36]

Gioria, E.; Li, S.; Mazheika, A.; D'Alnoncourt, R. N.; Thomas, A.; Rosowski, F. CuNi nanoalloys with tunable composition and oxygen defects for the enhancement of the oxygen evolution reaction. Angew. Chem., Int. Ed. 2023, 62, e202217888.

[37]

Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

[38]

Li, J. Y.; Xia, Z. M.; Xue, Q. Y.; Zhang, M. K.; Zhang, S.; Xiao, H.; Ma, Y. Y.; Qu, Y. Q. Insights into the interfacial Lewis acid-base pairs in CeO2-loaded CoS2 electrocatalysts for alkaline hydrogen evolution. Small 2021, 17, 2103018.

[39]

Yang, Y.; Agarwal, R. G.; Hutchison, P.; Rizo, R.; Soudackov, A. V.; Lu, X. Y.; Herrero, E.; Feliu, J. M.; Hammes-Schiffer, S.; Mayer, J. M. et al. Inverse kinetic isotope effects in the oxygen reduction reaction at platinum single crystals. Nat. Chem. 2023, 15, 271–277.

[40]

George, T. Y.; Asset, T.; Avid, A.; Atanassov, P.; Zenyuk, I. V. Kinetic isotope effect as a tool to investigate the oxygen reduction reaction on Pt-based electrocatalysts—Part I: High-loading Pt/C and Pt extended surface. ChemPhysChem 2020, 21, 469–475.

[41]

Zhang, Y.; Ma, C. Q.; Zhu, X. J.; Qu, K. Y.; Shi, P. D.; Song, L. Y.; Wang, J.; Lu, Q. P.; Wang, A. L. Hetero-interface manipulation in MoO x @Ru to evoke industrial hydrogen production performance with current density of 4000 mA cm−2. Adv. Energy. Mater. 2023, 13, 2301492.

[42]

Xie, Y. F.; Cai, J. Y.; Wu, Y. S.; Zang, Y. P.; Zheng, X. S.; Ye, J.; Cui, P. X.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Boosting water dissociation kinetics on Pt–Ni nanowires by N-induced orbital tuning. Adv. Mater. 2019, 31, 1807780.

Nano Research
Pages 4711-4719
Cite this article:
Zhou M, Zhao Y, Liu Z, et al. Edge dislocation-induced strains break the limit of PtNi alloys in boosting Pt mass activity for efficient alkaline hydrogen evolution. Nano Research, 2024, 17(6): 4711-4719. https://doi.org/10.1007/s12274-023-6359-6
Topics:

731

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 23 October 2023
Revised: 20 November 2023
Accepted: 21 November 2023
Published: 05 March 2024
© Tsinghua University Press 2024
Return