AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

One-step calcination synthesis of interface-coherent crystallized and surface-passivated LiNi0.5Mn1.5O4 for high-voltage lithium-ion battery

Min Xu1Bifu Sheng1Yong Cheng2Junjie Lu1Minfeng Chen1Peng Wang5Bo Liu3( )Jizhang Chen1( )Xiang Han1( )Ming-Sheng Wang2Siqi Shi4
College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
College of Mathematics and Physics, Jinggangshan University, Ji’an 343009, China
School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Western Digital Corporation, 951 Sandisk Dr, Milpitas, CA 95035, USA
Show Author Information

Graphical Abstract

In this work, localized interface-coherent crystallized and surface-modified LiNi0.5Mn1.5O4 (LNMO) cathode was successfully obtained by a one-step calcination technique. The modified LNMO cathode with multifunctional structural and surface passivating features exhibits excellent electrochemical properties even at 4.9 V, including high rate capability (94 mAh·g−1 at 750 mA·g−1), high capacity retention (95% during 400 cycles) and high energy density (~ 800 Wh·kg−1).

Abstract

LiNi0.5Mn1.5O4 (LNMO) with a spinel crystal structure presents a compelling avenue towards the development of economic cobalt-free and high voltage (~ 5 V) lithium-ion batteries. Nevertheless, the elevated operational voltage of LNMO gives rise to pronounced interfacial interactions between the distorted surface lattices characterized by Jahn–Teller (J–T) distortions and the electrolyte constituents. Herein, a localized crystallized coherent LaNiO3 and surface passivated Li3PO4 layer is deposited on LNMO via a one-step calcination process. As evidenced by transmission electron microscopy (TEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and density functional theory (DFT) calculation, the epitaxial growth of LaNiO3 along the LNMO lattice can effectively stabilize the structure and inhibit irreversible phase transitions, and the Li3PO4 surface coating can prevent the chemical reaction between HF and transition metals without sacrificing the electrochemical activity. In addition, the ionic conductive Li3PO4 and atomic wetting inter-layer enables fast charge transfer transport property. Consequently, the LNMO material enabled by the lattice bonding and surface passivating features, demonstrates high performance at high current densities and good capacity retention during long-term test. The rational design of interface coherent engineering and surface coating layers of the LNMO cathode material offers a new perspective for the practical application of high-voltage lithium-ion batteries.

Electronic Supplementary Material

Download File(s)
12274_2023_6361_MOESM1_ESM.pdf (1.8 MB)

References

[1]

Han, X.; Chen, H. X.; Liu, J. J.; Liu, H. H.; Wang, P.; Huang, K.; Li, C.; Chen, S. Y.; Yang, Y. A peanut shell inspired scalable synthesis of three-dimensional carbon coated porous silicon particles as an anode for lithium-ion batteries. Electrochim. Acta 2015, 156, 11–19.

[2]

Luo, L. S.; Zheng, F.; Gao, H. W.; Lan, C. F.; Sun, Z. F.; Huang, W.; Han, X.; Zhang, Z. Q.; Su, P. F.; Wang, P. et al. Tuning the electron transport behavior at Li/LATP interface for enhanced cyclability of solid-state Li batteries. Nano Res. 2023, 16, 1634–1641.

[3]

Zhao, S.; Ma, M. Z.; Gao, L. Y.; Gu, L. H.; Chen, M. F.; Han, G. D.; Yang, T. R.; Chen, J. Z.; Qi, D. F.; Wang, P. et al. Engineering the Li-ion flux and interfacial chemistry toward a stable Li metal anode via a simple separator coating strategy. New J. Chem. 2023, 47, 7986–7994.

[4]

Stüble, P.; Mereacre, V.; Geßwein, H.; Binder, J. R. On the composition of LiNi0.5Mn1.5O4 cathode active materials. Adv. Energy Mater. 2023, 13, 2203778.

[5]

Liang, G. M.; Peterson, V. K.; See, K. W.; Guo, Z. P.; Pang, W. K. Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: Current achievements and future prospects. J. Mater. Chem. A 2020, 8, 15373–15398.

[6]

Li, T.; Chen, Z. Y.; Bai, F. W.; Li, C. Z.; Li, Y. Diluted low concentration electrolyte for interphase stabilization of high-voltage LiNi0.5Mn1.5O4 cathode. J. Energy Chem. 2023, 81, 404–409.

[7]

Zou, Z. Y.; Xu, H. T.; Zhang, H. R.; Tang, Y.; Cui, G. L. Electrolyte therapy for improving the performance of LiNi0.5Mn1.5O4 cathodes assembled lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 21368–21385.

[8]

Piao, N.; Wang, P. F.; Chen, L.; Deng, T.; Fan, X. L.; Wang, L.; He, X. M. Nonflammable all-fluorinated electrolytes enabling high-power and long-life LiNi0.5Mn1.5O4/Li4Ti5O12 lithium-ion batteries. Nano Energy 2023, 105, 108040.

[9]

Liu, H. P.; Liang, G. M.; Gao, C.; Bi, S. F.; Chen, Q.; Xie, Y.; Fan, S. S.; Cao, L. X.; Pang, W. K.; Guo, Z. P. Insight into the improved cycling stability of sphere-nanorod-like micro-nanostructured high voltage spinel cathode for lithium-ion batteries. Nano Energy 2019, 66, 104100.

[10]

Zou, F.; Nallan, H. C.; Dolocan, A.; Xie, Q.; Li, J. Y.; Coffey, B. M.; Ekerdt, J. G.; Manthiram, A. Long-life LiNi0.5Mn1.5O4/graphite lithium-ion cells with an artificial graphite-electrolyte interface. Energy Storage Mater. 2021, 43, 499–508.

[11]

Han, Y.; Jiang, Y. S.; Xia, Y.; Deng, L.; Que, L. F.; Yu, F. D.; Wang, Z. B. Suppressed phase separation in spinel LiNi0.5Mn1.5O4 cathode via interstitial sites modulation. Nano Energy 2022, 91, 106636.

[12]

Sun, Y. J.; Wang, C. H.; Huang, W. J.; Zhao, G. F.; Duan, L. Y.; Liu, Q.; Wang, S. M.; Fraser, A.; Guo, H.; Sun, X. L. One-step calcination synthesis of bulk-doped surface-modified Ni-rich cathodes with superlattice for long-cycling Li-ion batteries. Angew Chem., Int. Ed. 2023, 62, e202300962.

[13]

Dong, J. Y.; Wu, F.; Zhao, J. Y.; Shi, Q.; Lu, Y.; Li, N.; Cao, D. Y.; Li, W. B.; Hao, J. N.; Yang, X. L. et al. Multifunctional self-reconstructive cathode/electrolyte interphase layer for cobalt-free Li-rich layered oxide cathode. Energy Storage Mater. 2023, 60, 102798.

[14]

Xu, T. H.; Li, Y. P.; Wang, D. D.; Wu, M. Y.; Pan, D.; Zhao, H. L.; Bai, Y. Enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode material by YPO4 surface modification. ACS Sustain. Chem. Eng. 2018, 6, 5818–5825.

[15]

Kaur, G.; Nesvaderani, F.; Hadidi, L.; Dunn, D.; Campbell, S.; Gates, B. D. Unraveling the role of composite Li3PO4/ZrO2 coatings prepared by dry milling on high voltage spinel cathodes for lithium-ion batteries: Insights into lattice strain, thermal behavior, material compatibility, and electrochemical performance. ACS Appl. Energy Mater. 2022, 5, 14335–14352.

[16]

Cho, H. M.; Chen, M. V.; MacRae, A. C.; Meng, Y. S. Effect of surface modification on nano-structured LiNi0.5Mn1.5O4 spinel materials. ACS Appl. Mater. Interfaces 2015, 7, 16231–16239.

[17]

Han, X.; Xu, M.; Gu, L.-H.; Lan, C.-F.; Chen, M.-F.; Lu, J.-J.; Sheng, B.-F.; Wang, P.; Chen, S.-Y.; Chen, J.-Z. Monothetic and conductive network and mechanical stress releasing layer on micron-silicon anode enabling high-energy solid-state battery. Rare Metals, in press, https://doi.org/10.1007/s12598-023-02498-4.

[18]

Jiao, X. W.; Rao, L.; Yap, J.; Yu, C. Y.; Kim, J. H. Stabilizing cathode-electrolyte interphase of LiNi0.5Mn1.5O4 high-voltage spinel by blending garnet solid electrolyte in lithium-ion batteries. J. Power Sources 2023, 561, 232748.

[19]

Shu, W.; Jian, Z. L.; Zhou, J.; Zheng, Y.; Chen, W. Boosting the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 by rough coating with the superionic conductor Li7La3Zr2O12. ACS Appl. Mater. Interfaces 2021, 13, 54916–54923.

[20]

Liu, J. D.; Wu, Z. H.; Yu, M.; Hu, H. L.; Zhang, Y. D.; Zhang, K.; Du, Z. X.; Cheng, F. Y.; Chen, J. Building homogenous Li2TiO3 coating layer on primary particles to stabilize Li-rich Mn-based cathode materials. Small 2022, 18, 2106337.

[21]

Sun, Y. J.; Huang, W. J.; Zhao, G. F.; Liu, Q.; Duan, L. Y.; Wang, S. M.; An, Q.; Wang, H.; Yang, Y. X.; Zhang, C. H. et al. LiNi0.9Co0.09Mo0.01O2 cathode with Li3PO4 coating and Ti doping for next-generation lithium-ion batteries. ACS Energy Lett. 2023, 8, 1629–1638.

[22]

Bunyanidhi, P.; Phattharasupakun, N.; Tomon, C.; Duangdangchote, S.; Kidkhunthod, P.; Sawangphruk, M. Mechanofusing garnet solid electrolyte on the surface of Ni-rich layered oxide cathode towards high-rate capability of cylindrical Li-ion battery cells. J. Power Sources 2022, 549, 232043.

[23]

Wang, L. G.; Liu, T. C.; Wu, T. P.; Lu, J. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 2022, 611, 61–67.

[24]

Wan, T. H.; Saccoccio, M.; Chen, C.; Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRTtools. Electrochim. Acta 2015, 184, 483–499.

[25]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[26]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[27]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[28]

Liu, B.; Xu, B.; Wu, M. S.; Ouyang, C. Y. First-principles GGA + U study on structural and electronic properties in LiMn0.5Ni0.5O2, LiMn0.5Co0.5O2 and LiCo0.5Ni0.5O2. Int. J. Electrochem. Sci. 2016, 11, 432–445.

[29]

Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 2004, 25, 1463–1473.

[30]

Zhu, X. B.; Schülli, T. U.; Yang, X. W.; Lin, T. E.; Hu, Y. X.; Cheng, N. Y.; Fujii, H.; Ozawa, K.; Cowie, B.; Gu, Q. F. et al. Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling. Nat. Commun. 2022, 13, 1565.

[31]

Xiao, B. W.; Liu, H. S.; Liu, J.; Sun, Q.; Wang, B. Q.; Kaliyappan, K.; Zhao, Y.; Banis, M. N.; Liu, Y. L.; Li, R. Y. et al. Nanoscale manipulation of spinel lithium nickel manganese oxide surface by multisite Ti occupation as high-performance cathode. Adv. Mater. 2017, 29, 1703764.

[32]

Zhang, N.; Long, X. H.; Wang, Z.; Yu, P. F.; Han, F. D.; Fu, J. M.; Ren, G. X.; Wu, Y. R.; Zheng, S.; Huang, W. C. et al. Mechanism study on the interfacial stability of a lithium garnet-type oxide electrolyte against cathode materials. ACS Appl. Energy Mater. 2018, 1, 5968–5976.

[33]

Guo, J.; Li, Y. J.; Chen, Y. X.; Deng, S. Y.; Zhu, J.; Wang, S. L.; Zhang, J. P.; Chang, S. H.; Zhang, D. W.; Xi, X. M. Stable interface Co3O4-coated LiNi0.5Mn1.5O4 for lithium-ion batteries. J. Alloys Compd. 2019, 811, 152031.

[34]

Xu, M.; Yang, M.; Chen, M. F.; Gu, L. H.; Luo, L. S.; Chen, S. Y.; Chen, J. Z.; Liu, B.; Han, X. Enabling structural and interfacial stability of 5 V spinel LiNi0.5Mn1.5O4 cathode by a coherent interface. J. Energy Chem. 2023, 76, 266–276.

[35]

Mickevičius, S.; Grebinskij, S.; Bondarenka, V.; Vengalis, B.; Šliužienė, K.; Orlowski, B. A.; Osinniy, V.; Drube, W. Investigation of epitaxial LaNiO3− x thin films by high-energy XPS. J. Alloys Compd. 2006, 423, 107–111.

[36]

Luo, Z. Y.; Zhou, Z. W.; He, Z. J.; Sun, Z. M.; Zheng, J. C.; Li, Y. J. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode by surface modification using La-Co-O compound. Ceram. Int. 2021, 47, 2656–2664.

[37]

Liu, S. Y.; Zhang, C. C.; Su, Q. L.; Li, L. Y.; Su, J. M.; Huang, T.; Chen, Y. B.; Yu, A. S. Enhancing electrochemical performance of LiNi0.6Co0.2Mn0.2O2 by lithium-ion conductor surface modification. Electrochim. Acta 2017, 224, 171–177.

[38]

Shen, Y. B.; Wu, Y. Q.; Zhang, D. Y.; Liang, Y.; Yin, D. M.; Wang, L. M.; Wang, L. C.; Cao, J. C.; Cheng, Y. Stabilization of high-voltage layered oxide cathode by utilizing residual lithium to form NASICON-type nanoscale functional coating. Nano Res. 2023, 16, 5973–5982.

[39]

Li, Y. P.; Zhang, Q.; Xu, T. H.; Wang, D. D.; Pan, D.; Zhao, H. L.; Bai, Y. LaF3 nanolayer surface modified spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. Ceram. Int. 2018, 44, 4058–4066.

[40]

Ma, J.; Hu, P.; Cui, G. L.; Chen, L. Q. Surface and interface issues in spinel LiNi0.5Mn1.5O4: Insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 2016, 28, 3578–3606.

[41]

Lim, G.; Shin, D.; Chae, K. H.; Cho, M. K.; Kim, C.; Sohn, S. S.; Lee, M.; Hong, J. Regulating dynamic electrochemical interface of LiNi0.5Mn1.5O4 spinel cathode for realizing simultaneous Mn and Ni redox in rechargeable lithium batteries. Adv. Energy Mater. 2022, 12, 2202049.

[42]

Lee, E. S.; Nam, K. W.; Hu, E. Y.; Manthiram, A. Influence of cation ordering and lattice distortion on the charge–discharge behavior of LiMn1.5Ni0.5O4 spinel between 5.0 and 2.0 V. Chem. Mater. 2012, 24, 3610–3620.

[43]

Yi, T. F.; Mei, J.; Zhu, Y. R. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J. Power Sources 2016, 316, 85–105.

[44]

Chen, J.; Quattrocchi, E.; Ciucci, F.; Chen, Y. H. Charging processes in lithium-oxygen batteries unraveled through the lens of the distribution of relaxation times. Chem 2023, 9, 2267–2281.

[45]

Fan, X. M.; Hu, G. R.; Zhang, B.; Ou, X.; Zhang, J. F.; Zhao, W. G.; Jia, H. P.; Zou, L. F.; Li, P.; Yang, Y. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 2020, 70, 104450.

[46]

Ou, X.; Liu, T. C.; Zhong, W. T.; Fan, X. M.; Guo, X. Y.; Huang, X. J.; Cao, L.; Hu, J. H.; Zhang, B.; Chu, Y. S. et al. Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material Co-doping strategy. Nat. Commun. 2022, 13, 2319.

[47]

Chen, Y. Q.; Chen, T. Y.; Hsu, W. D.; Pan, T. Y.; Her, L. J.; Chang, W. M.; Wohlfahrt-Mehrens, M.; Yoshitake, H.; Chang, C. C. An electrolyte additive with boron-nitrogen-oxygen alkyl group enabled stable cycling for high voltage LiNi0.5Mn1.5O4 cathode in lithium-ion battery. J. Power Sources 2020, 477, 228473.

[48]
Zhang, J.; Li, J. P.; Cao, L. H.; Cheng, W. H.; Guo, Z. Y.; Zuo, X. X.; Wang, C.; Cheng, Y. J.; Xia, Y. G.; Huang, Y. D. Surface-targeted functionalization of nickel-rich cathodes through synergistic slurry additive approach with multi-level impact using minimal quantity. Nano Res., 2023 , DOI: 10.1007/s12274-023-5960-z.
[49]

Hwang, T.; Lee, J. K.; Mun, J.; Choi, W. Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries. J. Power Sources 2016, 322, 40–48.

[50]

Zheng, X.; Liao, Y.; Zhang, Z. R.; Zhu, J. P.; Ren, F. C.; He, H. J.; Xiang, Y. X.; Zheng, Y. Z.; Yang, Y. Exploring high-voltage fluorinated carbonate electrolytes for LiNi0.5Mn1.5O4 cathode in Li-ion batteries. J. Energy Chem. 2020, 42, 62–70.

[51]

Chang, Q.; Wang, F.; Zuo, Z. C.; He, F.; Zhao, Y.; Wang, F. Y.; Li, Y. L. High voltage-stabilized graphdiyne cathode interface. Small 2021, 17, 2102066.

Nano Research
Pages 4192-4202
Cite this article:
Xu M, Sheng B, Cheng Y, et al. One-step calcination synthesis of interface-coherent crystallized and surface-passivated LiNi0.5Mn1.5O4 for high-voltage lithium-ion battery. Nano Research, 2024, 17(5): 4192-4202. https://doi.org/10.1007/s12274-023-6361-z
Topics:

633

Views

2

Crossref

1

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 21 September 2023
Revised: 10 November 2023
Accepted: 23 November 2023
Published: 29 December 2023
© Tsinghua University Press 2023
Return