AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Synthetic brochosomes: Design, synthesis, and applications

Lin Wang1,2Jinsol Choi1,2Tak-Sing Wong1,2,3( )
Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
Show Author Information

Graphical Abstract

A false-colored scanning electron microscopic image showing the synthetic brochosomes fabricated by double-layer colloidal crystal template method.

Abstract

Brochosomes, which are nanoscopic buckyball-shaped granules produced by leafhoppers, are one of the most intricate structures discovered in nature. Various functions of brochosomes have been proposed but only a few have been experimentally validated due to the challenge of fabricating their synthetic counterparts. Advancements in micro- and nanofabrication have recently led to the emergence of synthetic brochosomes, opening up new possibilities for innovative applications. This review explores the early discovery of natural brochosomes and their geometrical features, followed by the recent progress in fabricating synthetic brochosomes and their applications. Perspectives on future applications and challenges in the scalable manufacturing of synthetic brochosomes are discussed.

References

[1]

Tulloch, G. S.; Shapiro, J. E.; Cochran, G. W. The occurrence of ultramicroscopic bodies with leafhoppers and mosquitoes. Bull. Brooklyn Entomol. Soc. 1952, 47, 41–42.

[2]

Tulloch, G. S.; Shapiro, J. E. Brochosomes. Bull. Brooklyn Entomol. Soc. 1953, 48, 57.

[3]

Tulloch, G. S.; Shapiro, J. E. Brochosomes and leafhoppers. Science 1954, 120, 232–232.

[4]

Rakitov, R. A. Secretion of brochosomes during the ontogenesis of a leafhopper, Oncometopia orbona (F) (Insecta, Homoptera, Cicadellidae). Tissue Cell 2000, 32, 28–39.

[5]

Rakitov, R. A. Secretory products of the Malpighian tubules of Cicadellidae (Hemiptera, Membracoidea): An ultrastructural study. Int. J. Insect Morphol. Embryol. 1999, 28, 179–193.

[6]

Rakitov, R. A. Powdering of egg nests with brochosomes and related sexual dimorphism in leafhoppers (Hemiptera: Cicadellidae). Zool. J. Linn. Soc. 2004, 140, 353–381.

[7]

de Azevedo-Filho, W. S.; Carvalho, G. S. Brochosomes-for-eggs of the Proconiini (Hemiptera: Cicadellidae, Cicadellinae) species associated with orchards of Citrus sinensis (L) Osbeck in Rio Grande do Sul, Brazil. Neotrop. Entomol. 2005, 34, 387–394.

[8]

de Azevedo Filho, W. S.; Botton, M.; Paladini, A.; Carvalho, G. S.; Ringenberg, R.; Lopes, J. R. S. Egg brochosomes of proconiini (Hemiptera: Cicadellidae, Cicadellinae) species associated with cultivation of grapevines. Sci. Agric. 2008, 65, 209–213.

[9]

Day, M. F.; Briggs, M. The origin and structure of brochosomes. J. Ultrastruct. Res. 1958, 2, 239–244.

[10]

Smith, D. S.; Littau, V. C. Cellular specialization in the excretory epithelia of an insect, Macrosteles fascifrons Stål (Homoptera). J. Biophys. Biochem. Cytol. 1960, 8, 103–133.

[11]

Gouranton, J.; Maillet, P. L. Origine et structure des brochosomes. J. Microscopie 1967, 6, 53–64.

[12]

Rakitov, R.; Moysa, A. A.; Kopylov, A. T.; Moshkovskii, S. A.; Peters, R. S.; Meusemann, K.; Misof, B.; Dietrich, C. H.; Johnson, K. P.; Podsiadlowski, L. et al. Brochosomins and other novel proteins from brochosomes of leafhoppers (Insecta, Hemiptera, Cicadellidae). Insect Biochem. Mol. Biol. 2018, 94, 10–17.

[13]

Rakitov, R. A. Post-moulting behaviour associated with Malpighian tubule secretions in leafhoppers and treehoppers (Auchenorrhyncha: Membracoidea). Eur. J. Entomol. 1996, 93, 167–184.

[14]

Storey, H. H.; Nichols, R. F. W. Defaecation by a Jassid species. Proc. Roy. Entomol. Soc. Lond. Ser. A Gen. Entomol. 1937, 12, 149–150.

[15]

Vidano, C.; Arzone, A. “Wax-area” in cicadellids and its connection with brochosomes from Malpighian tubules. Mitt. Schweiz. Entomol. Ges. 1984, 57, 444–445.

[16]

Dong, H. Y.; Huang, M. Analysis of the anointing and grooming behavior of several adult insects in Typhlocybinae (Hemiptera: Cicadellidae). J. Insect Behav. 2013, 26, 540–549.

[17]

Navone, P. Origine, struttura e funzioni di escreti e secreti entomatici di aspetto ceroso distribuiti sul corpo mediante zampe. Ann. Fac. Sci. Agr. Univ. Stud. Torino 1987, 14, 237–294.

[18]

Rakitov, R.; Gorb, S. N. Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state. Proc. Roy. Soc. B: Biol. Sci. 2013, 280, 20122391.

[19]

Rakitov, R.; Gorb, S. N. Brochosomes protect leafhoppers (Insecta, Hemiptera, Cicadellidae) from sticky exudates. J. Roy. Soc. Interface 2013, 10, 20130445.

[20]

Arzone, A. Brocosomi: Origine, forma, funzione. Atti Accad. Naz. Ital. Entomol. Rc. 1986, 34, 59–71.

[21]

Mayse, M. A. Observations on the occurrence of chalky deposits on forewings of Oncometopia orbona (F) (Homoptera: Cicadellidae). J. Ark. Acad. Sci. 1981, 35, 84–86.

[22]

Hix, R. Egg-laying and brochosome production observed in glassy-winged sharpshooter. Calif. Agric. 2001, 55, 19–22.

[23]

Humphrey, E. C.; Dworakowska, I. The natural history of brochosomes in Yakuza ganunga (Hemiptera, Auchenorrhyncha, Cicadellidae, Typhlocybinae, Erythroneurini). Denisia 2002, 4, 433–454.

[24]

Swain, R. B. Notes on the oviposition and life-history of the leafhopper Oncometopia undata Fabr. (Homoptera: Cicadellidae). Entomol. News 1936, 47, 264–266.

[25]

Yang, S. K.; Sun, N.; Stogin, B. B.; Wang, J.; Huang, Y.; Wong, T. S. Ultra-antireflective synthetic brochosomes. Nat. Commun. 2017, 8, 1285.

[26]

Shih, M. S.; Chen, H. Y.; Li, P. C.; Yang, H. T. Broadband omnidirectional antireflection coatings inspired by embroidered ball-like structures on leafhoppers. Appl. Surf. Sci. 2020, 532, 147397.

[27]

Riley, C. V.; Howard, L. O. The glassy-winged sharpshooter. Insect Life 1893, 5, 150–154.

[28]

Rakitov, R. A. The covering formed by brochosomes on the cuticle of leafhoppers (Homoptera, Cicadellidae). Entomol. Rev. 1995, 74, 90–103.

[29]

Lei, C. W.; Chen, R. Y.; Yang, H. T. Leafhopper wing-inspired broadband omnidirectional antireflective embroidered ball-like structure arrays using a nonlithography-based methodology. Langmuir 2020, 36, 5296–5302.

[30]

Si, Y. S.; Huang, T. Q.; Xie, H. Q.; Chen, M. Synthesis of biomimetic brochosome-shaped microspheres via droplets assembly strategy. Chem. Mater. 2022, 34, 7271–7279.

[31]
Pan, Q.; Zhang, H. F.; Yang, Y. P.; Cheng, C. W. 3D brochosomes-like TiO2/WO3/BiVO4 arrays as photoanode for photoelectrochemical hydrogen production. Small 2019 , 15, 1900924.
[32]

Zhu, K.; Yang, K.; Zhang, Y. Z.; Yang, Z. Y.; Qian, Z. T.; Li, N.; Li, L.; Jiang, G. H.; Wang, T. Y.; Zong, S. F. et al. Wearable SERS sensor based on omnidirectional plasmonic nanovoids array with ultra-high sensitivity and stability. Small 2022, 18, 2201508.

[33]

Zhao, W. D.; Zhang, Y. X.; Yang, J. J.; Li, J. M.; Feng, Y.; Quan, M. H.; Yang, Z.; Xiao, S. Y. Synergistic plasmon resonance coupling and light capture in ordered nanoarrays as ultrasensitive and reproducible SERS substrates. Nanoscale 2020, 12, 18056–18066.

[34]

Si, Y. S.; Huang, T. Q.; Li, Q. J.; Huang, Y. T.; Gao, S. P.; Chen, M.; Wu, L. M. Hierarchical macro-mesoporous polymeric carbon nitride microspheres with narrow bandgap for enhanced photocatalytic hydrogen production. Adv. Mater. Interfaces 2018, 5, 1801241.

[35]

Liu, Z. Q.; Li, W.; Sheng, W. B.; Liu, S. Y.; Li, R.; Li, Q.; Li, D. Y.; Yu, S.; Li, M.; Li, Y. S. et al. Tunable hierarchically structured meso-macroporous carbon spheres from a solvent-mediated polymerization-induced self-assembly. J. Am. Chem. Soc. 2023, 145, 5310–5319.

[36]

Clapham, P. B.; Hutley, M. C. Reduction of lens reflexion by the “moth eye” principle. Nature 1973, 244, 281–282.

[37]

Miller, W. H.; Bernard, G. D.; Allen, J. L. The optics of insect compound eyes. Science 1968, 162, 760–767.

[38]

Shavit, K.; Wagner, A.; Schertel, L.; Farstey, V.; Akkaynak, D.; Zhang, G.; Upcher, A.; Sagi, A.; Yallapragada, V. J.; Haataja, J. et al. A tunable reflector enabling crustaceans to see but not be seen. Science 2023, 379, 695–700.

[39]

Li, Y. F.; Zhang, J. H.; Yang, B. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today 2010, 5, 117–127.

[40]

Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804.

[41]

Banerjee, P.; Burks, G. R.; Bialik, S. B.; Nassr, M.; Bello, E.; Alleyne, M.; Freeman, B. D.; Barrick, J. E.; Schroeder, C. M.; Milliron, D. J. Nanostructure-derived antireflectivity in leafhopper brochosomes. Adv. Photonics Res. 2023, 4, 2200343.

[42]

Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 2008, 38, 71–99.

[43]

Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

[44]

Cassie, A. B. D.; Baxter, S. Large contact angles of plant and animal surfaces. Nature 1945, 155, 21–22.

[45]

Ding, Q. Q.; Kang, Y. L.; Li, W. L.; Sun, G. F.; Liu, H.; Li, M.; Ye, Z. R.; Zhou, M.; Zhou, J. G.; Yang, S. K. Bioinspired brochosomes as broadband and omnidirectional surface-enhanced Raman scattering substrates. J. Phys. Chem. Lett. 2019, 10, 6484–6491.

[46]

Liu, H.; Xu, C.; Xia, Q. D.; Ying, Y. B.; Li, Q.; Zhao, X. Y.; Zhang, Y. J.; Yang, S. K. Tailorable and angle-independent colors from synthetic brochosomes. ACS Nano 2023, 17, 2257–2265.

[47]

Hua, C. Z.; Cheng, Z. Q.; Ma, Y. C.; He, H. Y.; Xu, G.; Liu, Y.; Yang, S. K.; Han, G. R. Enhanced electrochromic tungsten oxide by bio-inspired brochosomes. J. Electrochem. Soc. 2021, 168, 042503.

[48]

Skliutas, E.; Lebedevaite, M.; Kabouraki, E.; Baldacchini, T.; Ostrauskaite, J.; Vamvakaki, M.; Farsari, M.; Juodkazis, S.; Malinauskas, M. Polymerization mechanisms initiated by spatio-temporally confined light. Nanophotonics 2021, 10, 1211–1242.

[49]

Kelly, B. E.; Bhattacharya, I.; Heidari, H.; Shusteff, M.; Spadaccini, C. M.; Taylor, H. K. Volumetric additive manufacturing via tomographic reconstruction. Science 2019, 363, 1075–1079.

[50]

Tumbleston, J. R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J. P.; Ermoshkin, A. et al. Continuous liquid interface production of 3D objects. Science 2015, 347, 1349–1352.

[51]

Han, F.; Gu, S. Y.; Klimas, A.; Zhao, N.; Zhao, Y. X.; Chen, S. C. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science 2022, 378, 1325–1331.

[52]

Klaus-Joerger, T.; Joerger, R.; Olsson, E.; Granqvist, C. G. Bacteria as workers in the living factory: Metal-accumulating bacteria and their potential for materials science. Trends Biotechnol. 2001, 19, 15–20.

[53]

Kolinko, I.; Lohße, A.; Borg, S.; Raschdorf, O.; Jogler, C.; Tu, Q.; Pósfai, M.; Tompa, É.; Plitzko, J. M.; Brachmann, A. et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotechnol. 2014, 9, 193–197.

[54]

Choi, Y.; Park, T. J.; Lee, D. C.; Lee, S. Y. Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials. Proc. Natl. Acad. Sci. USA 2018, 115, 5944–5949.

[55]

Iravani, S.; Varma, R. S. Biofactories: Engineered nanoparticles via genetically engineered organisms. Green Chem. 2019, 21, 4583–4603.

[56]

Edwards, D. A.; Hanes, J.; Caponetti, G.; Hrkach, J.; Ben-Jebria, A.; Eskew, M. L.; Mintzes, J.; Deaver, D.; Lotan, N.; Langer, R. Large porous particles for pulmonary drug delivery. Science 1997, 276, 1868–1872.

[57]

Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

[58]

Mukherjee, R.; Krishnan, R.; Lu, T. M.; Koratkar, N. Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 2012, 1, 518–533.

[59]

Wang, Y.; Huang, X. L.; Liu, H. W.; Qiu, W. L.; Feng, C.; Li, C.; Zhang, S. H.; Liu, H. K.; Dou, S. X.; Wang, Z. M. Nanostructure engineering strategies of cathode materials for room-temperature Na-S batteries. ACS Nano 2022, 16, 5103–5130.

[60]

Jain, R.; Lakhnot, A. S.; Bhimani, K.; Sharma, S.; Mahajani, V.; Panchal, R. A.; Kamble, M.; Han, F. D.; Wang, C. S.; Koratkar, N. Nanostructuring versus microstructuring in battery electrodes. Nat. Rev. Mater. 2022, 7, 736–746.

[61]

Chen, G. Y.; Seo, J.; Yang, C. H.; Prasad, P. N. Nanochemistry and nanomaterials for photovoltaics. Chem. Soc. Rev. 2013, 42, 8304–8338.

[62]

Liu, L. X.; Luo, C. H.; Zhang, J. H.; He, X.; Shen, Y.; Yan, B.; Huang, Y.; Xia, F.; Jiang, L. Synergistic effect of bio-inspired nanochannels: Hydrophilic DNA probes at inner wall and hydrophobic coating at outer surface for highly sensitive detection. Small 2022, 18, 2201925.

[63]

Yang, X.; Wang, J. H.; Gao, Z. F.; Zhang, W. Q.; Zhu, H.; Song, Y. J.; Wang, Q.; Liu, M. J.; Jiang, L.; Huang, Y. et al. An orthogonal dual-regulation strategy for sensitive biosensing applications. Natl. Sci. Rev. 2022, 9, nwac048.

[64]

Huang, Y.; Liu, L. X.; Yang, X.; Zhang, X. Y.; Yan, B.; Wu, L.; Feng, P. J.; Lou, X. D.; Xia, F.; Song, Y. L. et al. A diverse micromorphology of photonic crystal chips for multianalyte sensing. Small 2021, 17, 2006723.

[65]

Jakšić, Z.; Obradov, M.; Jakšić, O. Brochosome-inspired metal-containing particles as biomimetic building blocks for nanoplasmonics: Conceptual generalizations. Biomimetics 2021, 6, 69.

[66]

Zhang, X. G.; Zhang, X. L.; Luo, C. L.; Liu, Z. Q.; Chen, Y. Y.; Dong, S. L.; Jiang, C. Z.; Yang, S. K.; Wang, F. B.; Xiao, X. H. Volume-enhanced Raman scattering detection of viruses. Small 2019, 15, 1805516.

[67]

Yang, S. K.; Dai, X. M.; Stogin, B. B.; Wong, T. S. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. USA 2016, 113, 268–273.

Nano Research
Pages 734-742
Cite this article:
Wang L, Choi J, Wong T-S. Synthetic brochosomes: Design, synthesis, and applications. Nano Research, 2024, 17(2): 734-742. https://doi.org/10.1007/s12274-023-6362-y
Topics:
Part of a topical collection:

832

Views

50

Downloads

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 05 June 2023
Revised: 22 November 2023
Accepted: 23 November 2023
Published: 12 December 2023
© Tsinghua University Press 2023
Return