Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The administration time is a critical but long-neglected point in cell therapy based on macrophages because the incorrect time of macrophage administration could result in diverse outcomes regarding the same macrophage therapy. In this work, the second near-infrared (NIR-II) fluorescence imaging in vivo tracking of M2 macrophages during a pro-healing therapy in the mice model of rotator cuff injury revealed that the behavior of administrated macrophages was influenced by the timing of their administration. The delayed cell therapy (DCT) group had a longer retention time of injected M2 macrophages in the repairing tissue than that in the immediate cell therapy (ICT) group. Both Keller–Segel model and histological analysis further demonstrated that DCT altered the chemotaxis of M2 macrophages and improved the healing outcome of the repaired structure in comparison with ICT. Our results offer a possible explanation of previous conflicting results on reparative cell therapy and provoke reconsideration of the timing of these therapies.
Dreymueller, D.; Denecke, B.; Ludwig, A.; Jahnen-Dechent, W. Embryonic stem cell-derived M2-like macrophages delay cutaneous wound healing. Wound Repair Regen. 2013, 21, 44–54.
Duan, J.; Liu, X. S.; Wang, H. L.; Guo, S. W. The M2a macrophage subset may be critically involved in the fibrogenesis of endometriosis in mice. Reprod. Biomed. Online 2018, 37, 254–268.
Gulotta, L. V.; Kovacevic, D.; Ehteshami, J. R.; Dagher, E.; Packer, J. D.; Rodeo, S. A. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am. J. Sports. Med. 2009, 37, 2126–2133.
Murray, P. J.; Allen, J. E.; Biswas, S. K.; Fisher, E. A.; Gilroy, D. W.; Goerdt, S.; Gordon, S.; Hamilton, J. A.; Ivashkiv, L. B.; Lawrence, T. et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41, 14–20.
Arnold, L.; Henry, A.; Poron, F.; Baba-Amer, Y.; van Rooijen, N.; Plonquet, A.; Gherardi, R. K.; Chazaud, B. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 2007, 204, 1057–1069.
Lucas, T.; Waisman, A.; Ranjan, R.; Roes, J.; Krieg, T.; Müller, W.; Roers, A.; Eming, S. A. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 2010, 184, 3964–3977.
Contreras-Muñoz, P.; Torrella, J. R.; Venegas, V.; Serres, X.; Vidal, L.; Vila, I.; Lahtinen, I.; Viscor, G.; Martínez-Ibáñez, V.; Peiró, J. L. et al. Muscle precursor cells enhance functional muscle recovery and show synergistic effects with postinjury treadmill exercise in a muscle injury model in rats. Am. J. Sports Med. 2021, 49, 1073–1085.
Chamberlain, C. S.; Clements, A. E. B.; Kink, J. A.; Choi, U.; Baer, G. S.; Halanski, M. A.; Hematti, P.; Vanderby, R. Extracellular vesicle-educated macrophages promote early achilles tendon healing. Stem Cells. 2019, 37, 652–662.
Jayme, T. S.; Leung, G.; Wang, A.; Workentine, M. L.; Rajeev, S.; Shute, A.; Callejas, B. E.; Mancini, N.; Beck, P. L.; Panaccione, R. et al. Human interleukin-4-treated regulatory macrophages promote epithelial wound healing and reduce colitis in a mouse model. Sci. Adv. 2020, 6, eaba4376.
Jetten, N.; Roumans, N.; Gijbels, M. J.; Romano, A.; Post, M. J.; de Winther, M. P. J.; van der Hulst, R. R. W. J.; Xanthoulea, S. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLoS One. 2014, 9, e102994.
D'Alessio, F. R.; Craig, J. M.; Singer, B. D.; Files, D. C.; Mock, J. R.; Garibaldi, B. T.; Fallica, J.; Tripathi, A.; Mandke, P.; Gans, J. H. et al. Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 310, L733–L746.
Francos-Quijorna, I.; Amo-Aparicio, J.; Martinez-Muriana, A.; López-Vales, R. IL-4 drives microglia and macrophages toward a phenotype conducive for tissue repair and functional recovery after spinal cord injury. Glia. 2016, 64, 2079–2092.
Jetten, N.; Donners, M. M. P. C.; Wagenaar, A.; Cleutjens, J. P. M.; van Rooijen, N.; de Winther, M. P. J.; Post, M. J. Local delivery of polarized macrophages improves reperfusion recovery in a mouse hind limb ischemia model. PLoS One 2013, 8, e68811.
Raimondo, T. M.; Mooney, D. J. Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice. Proc. Natl. Acad. Sci. USA 2018, 115, 10648–10653.
Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016, 116, 2826–2885.
Wan, H.; Yue, J. Y.; Zhu, S. J.; Uno, T.; Zhang, X. D.; Yang, Q. L.; Yu, K.; Hong, G. S.; Wang, J. Y.; Li, L. L. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 2018, 9, 1171.
Welsher, K.; Sherlock, S. P.; Dai, H. J. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA 2011, 108, 8943–8948.
Yang, Y. M.; Chen, J.; Shang, X. L.; Feng, Z. J.; Chen, C.; Lu, J. Y.; Cai, J. Y.; Chen, Y. Z.; Zhang, J.; Hao, Y. F. et al. Visualizing the fate of intra-articular injected mesenchymal stem cells in vivo in the second near-infrared window for the effective treatment of supraspinatus tendon tears. Adv. Sci. 2019, 6, 1901018.
Lebaschi, A. H.; Deng, X. H.; Camp, C. L.; Zong, J. C.; Cong, G. T.; Carballo, C. B.; Album, Z.; Rodeo, S. A. Biomechanical, histologic, and molecular evaluation of tendon healing in a new murine model of rotator cuff repair. Arthros.: J. Arthros. Relat. Surg. 2018, 34, 1173–1183.
Keller, E. F.; Segel, L. A. Model for chemotaxis. J. Theor. Biol. 1971, 30, 225–234.
Zhong, Y. T.; Jin, W. H.; Gao, H.; Sun, L. Y.; Wang, P.; Zhang, J.; Ong, M. T. Y.; Sai Chuen Bruma, F.; Chen, S.; Chen, J. A knitted PET patch enhances the maturation of regenerated tendons in bridging reconstruction of massive rotator cuff tears in a rabbit model. Am. J. Sports Med. 2023, 51, 901–911.
Chen, J. M.; Yu, Q.; Wu, B.; Lin, Z.; Pavlos, N. J.; Xu, J. K.; Ouyang, H. W.; Wang, A.; Zheng, M. H. Autologous tenocyte therapy for experimental Achilles tendinopathy in a rabbit model. Tissue Eng. Part A. 2011, 17, 2037–2048.
Cong, S.; Sun, Y. Y.; Lin, J. R.; Liu, S. H.; Chen, J. W. A Synthetic graft with multilayered co-electrospinning nanoscaffolds for bridging massive rotator cuff tear in a rat model. Am. J. Sports Med. 2020, 48, 1826–1836.
Kong, Y. F.; Chen, J.; Fang, H. W.; Heath, G.; Wo, Y.; Wang, W. L.; Li, Y. X.; Guo, Y.; Evans, S. D.; Chen, S. Y. et al. Highly fluorescent ribonuclease-a-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window. Chem. Mater. 2016, 28, 3041–3050.
Dong, S. X.; Feng, S. J.; Chen, Y. Z.; Chen, M.; Yang, Y. M.; Zhang, J.; Li, H. Z.; Li, X. T.; Ji, L.; Yang, X. et al. Nerve suture combined with ADSCs injection under real-time and dynamic NIR-II fluorescence imaging in peripheral nerve regeneration in vivo. Front. Chem. 2021, 9, 676928.
Ying, W.; Cheruku, P. S.; Bazer, F. W.; Safe, S. H.; Zhou, B. Y. Investigation of macrophage polarization using bone marrow derived macrophages. J. Vis. Exp. 2013, 23, 50323.
Marsolais, D.; Cǒté, C. H.; Frenette, J. Neutrophils and macrophages accumulate sequentially following Achilles tendon injury. J. Orthop. Res. 2001, 19, 1203–1209.
Angeline, M. E.; Rodeo, S. A. Biologics in the management of rotator cuff surgery. Clin. Sports Med. 2012, 31, 645–663.
Mandaliya, H.; Jones, M.; Oldmeadow, C.; Nordman, I. I. C. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): Neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI). Transl. Lung. Cancer Res. 2019, 8, 886–894.
Sun, Y. Y.; Lin, J. R.; Luo, Z. W.; Chen, J. W. Preoperative lymphocyte to monocyte ratio can Be a prognostic factor in arthroscopic repair of small to large rotator cuff tears. Am. J. Sports Med. 2020, 48, 3042–3050.
Ahn, J. H.; Lee, S. H.; Choi, S. H.; Lim, T. K. Magnetic resonance imaging evaluation of anterior cruciate ligament reconstruction using quadrupled hamstring tendon autografts: Comparison of remnant bundle preservation and standard technique. Am. J. Sports Med. 2010, 38, 1768–1777.
Li, H.; Tao, H. Y.; Cho, S.; Chen, S.; Yao, Z. J.; Chen, S. Y. Difference in graft maturity of the reconstructed anterior cruciate ligament 2 years postoperatively: A comparison between autografts and allografts in young men using clinical and 3.0-T magnetic resonance imaging evaluation. Am. J. Sports Med. 2012, 40, 1519–1526.
Liu, S. H.; Xie, Y. X.; Chen, Q. Y.; Sun, Y. Y.; Ding, Z. C.; Zhang, Y. H.; Chen, S. Y.; Chen, J. W. Tendon healing progression evaluated with magnetic resonance imaging signal intensity and its correlation with clinical outcomes within 1 year after rotator cuff repair with the suture-bridge technique. Am. J. Sports Med. 2020, 48, 697–705.