AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Sub-nanosized vanadate hybrid clusters maintain glucose homeostasis and restore treatment response in inflammatory disease in obese mice

Kun Chen1,2,3 ( )Shengqiu Liu1Yujun Wei1
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
Show Author Information

Graphical Abstract

Administration of sub-nanosized polyoxovanadates modified with unsaturated lipids enhances insulin sensitivity and alleviates the undesired immune response caused by obesity in a mouse model of atopic dermatitis.

Abstract

Obesity is closely related with insulin resistance and chronic inflammation. Here, we report that unsaturated lipid-modified polyoxovanadates (ULPOVs) can restrict weight gain of diet-induced obese mice and improve their glycemic control and obesity-associated inflammation. Oral administration of the sub-nanosized ULPOVs at a low dosage for 7 weeks reduces the body weight and almost normalizes the blood glucose levels of obese mice fed on a high-fat diet. ULPOV treatment increases the activity of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) and reduces intestinal caloric intake, which may be the main reason for blood sugar and body weight control. In addition to insulin-sensitizing, PPARγ activation induced by ULPOV treatment in obese mice with atopic dermatitis (AD) promotes the type 2 T helper (TH2) cell selective responses and therapeutic effects on immune dysregulation caused by obesity. These data suggest sub-nanosized polyoxovanadate clusters as a class of potential candidates to relieve symptoms accompanied by diet-induced obesity.

Electronic Supplementary Material

Download File(s)
12274_2023_6366_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D. W.; Fasano, A.; Miller, G. W. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832.

[2]

Sakers, A.; De Siqueira, M. K.; Seale, P.; Villanueva, C. J. Adipose-tissue plasticity in health and disease. Cell 2022, 185, 419–446.

[3]

Huang, X. Z.; Shi, Y. J.; Chen, H. J.; Le, R. R.; Gong, X. H.; Xu, K.; Zhu, Q. H.; Shen, F. X.; Chen, Z. M.; Gu, X. M. et al. Isoliquiritigenin prevents hyperglycemia-induced renal injuries by inhibiting inflammation and oxidative stress via SIRT1-dependent mechanism. Cell Death Dis. 2020, 11, 1040.

[4]

Priest, C.; Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. Nat. Metab. 2019, 1, 1177–1188.

[5]

Netea, M. G.; Domínguez-Andrés, J.; Barreiro, L. B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L. A. B.; van der Meer, J. W. M.; Mhlanga, M. M.; Mulder, W. J. M. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388.

[6]

Bookout, A. L.; de Groot, M. H. M.; Owen, B. M.; Lee, S.; Gautron, L.; Lawrence, H. L.; Ding, X. S.; Elmquist, J. K.; Takahashi, J. S.; Mangelsdorf, D. J. et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 2013, 19, 1147–1152

[7]

Ruderman, N. B.; Carling, D.; Prentki, M.; Cacicedo, J. M. AMPK, insulin resistance, and the metabolic syndrome. J. Clin. Invest. 2013, 123, 2764–2772.

[8]

Brautigan, D. L. Protein Ser/Thr phosphatases-the ugly ducklings of cell signalling. FEBS J. 2013, 280, 324–325.

[9]

Yang, Y.; Reid, M. A.; Hanse, E. A.; Li, H. Q.; Li, Y. D.; Ruiz, B. I.; Fan, Q.; Kong, M. SAPS3 subunit of protein phosphatase 6 is an AMPK inhibitor and controls metabolic homeostasis upon dietary challenge in male mice. Nat. Commun. 2023, 14, 1368

[10]

Catrysse, L.; Maes, B.; Mehrotra, P.; Martens, A.; Hoste, E.; Martens, L.; Maueröder, C.; Remmerie, A.; Bujko, A.; Slowicka, K. et al. A20 deficiency in myeloid cells protects mice from diet-induced obesity and insulin resistance due to increased fatty acid metabolism. Cell Rep. 2021, 36, 109748

[11]

Priem, D.; van Loo, G.; Bertrand, M. J. M. A20 and cell death-driven inflammation. Trends Immunol. 2020, 41, 421–435

[12]

Francque, S.; Szabo, G.; Abdelmalek, M. F.; Byrne, C. D.; Cusi, K.; Dufour, J. F.; Roden, M.; Sacks, F.; Tacke, F. Nonalcoholic steatohepatitis: The role of peroxisome proliferator-activated receptors. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 24–39.

[13]

Montaigne, D.; Butruille, L.; Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021, 18, 809–823.

[14]

Scholtes, C.; Giguère, V. Transcriptional control of energy metabolism by nuclear receptors. Nat. Rev. Mol. Cell Biol. 2022, 23, 750–770.

[15]

Tontonoz, P.; Spiegelman, B. M. Fat and beyond: The diverse biology of PPARγ. Annu. Rev. Biochem. 2008, 77, 289–312.

[16]

Odegaard, J. I.; Ricardo-Gonzalez, R. R.; Goforth, M. H.; Morel, C. R.; Subramanian, V.; Mukundan, L.; Red Eagle, A.; Vats, D.; Brombacher, F.; Ferrante, A. W. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 2007, 447, 1116–1120.

[17]

Forman, B. M.; Tontonoz, P.; Chen, J.; Brun, R. P.; Spiegelman, B. M.; Evans, R. M. 15-Deoxy-Δ12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 1995, 83, 803–812

[18]

Jiang, C. Y.; Ting, A. T.; Seed, B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 1998, 391, 82–86.

[19]

Wang, L. M.; Waltenberger, B.; Pferschy-Wenzig, E. M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J. M.; Heiss, E. H. et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem. Pharmacol. 2014, 92, 73–89.

[20]

Wu, Y. L.; Huang, M. L.; Zhao, P.; Yang, X. D. Vanadyl acetylacetonate upregulates PPARγ and adiponectin expression in differentiated rat adipocytes. J. Biol. Inorg. Chem. 2013, 18, 623–631.

[21]

Dong, Y. Q.; Stewart, T.; Zhang, Y.; Shi, M.; Tan, C.; Li, X.; Yuan, L.; Mehrotra, A.; Zhang, J.; Yang, X. D. Anti-diabetic vanadyl complexes reduced Alzheimer's disease pathology independent of amyloid plaque deposition. Sci. China Life Sci. 2019, 62, 126–139.

[22]

Aureliano, M.; Gumerova, N. I.; Sciortino, G.; Garribba, E.; Rompel, A.; Crans, D. C. Polyoxovanadates with emerging biomedical activities. Coord. Chem. Rev. 2021, 447, 214143.

[23]

Chen, K.; Jia, H. L.; Liu, Y.; Yin, P. C.; Wei, Y. G. Insulin-sensitizing activity of sub-nanoscaled polyalkoxyvanadate clusters. Adv. Biosyst. 2020, 4, 1900281.

[24]

Chen, K.; Liu, S. Q.; Zhang, Q. Y. Degradation and detection of endocrine disruptors by laccase-mimetic polyoxometalates. Front. Chem. 2022, 10, 854045.

[25]

Zang, D. J.; Huang, Y. C.; Li, Q.; Tang, Y. J.; Wei, Y. G. Cu dendrites induced by the Anderson-type polyoxometalate NiMo6O24 as a promising electrocatalyst for enhanced hydrogen evolution. Appl. Catal. B: Environ. 2019, 249, 163–171.

[26]

Wei, Z. Y.; Ru, S.; Zhao, Q. X.; Yu, H.; Zhang, G.; Wei, Y. G. Highly efficient and practical aerobic oxidation of alcohols by inorganic-ligand supported copper catalysis. Green Chem. 2019, 21, 4069–4075.

[27]

Xia, Z. N.; Wang, L. B.; Zhang, Q.; Li, F. Y.; Xu, L. Fast degradation of phenol over porphyrin-polyoxometalate composite photocatalysts under visible light. Polyoxometalates 2022, 1, 9140001.

[28]

Kong, X. P.; Wan, G. F.; Li, B.; Wu, L. X. Recent advances of polyoxometalates in multi-functional imaging and photothermal therapy. J. Mater. Chem. B 2020, 8, 8189–8206.

[29]

Li, X. P.; Liu, S. Q.; Yin, P. C.; Chen, K. Enhanced immune responses by virus-mimetic polymeric nanostructures against infectious diseases. Front. Immunol. 2022, 12, 804416.

[30]

Li, X. P.; He, X. F.; He, D. R.; Liu, Y.; Chen, K.; Yin, P. C. A polymeric co-assembly of subunit vaccine with polyoxometalates induces enhanced immune responses. Nano Res. 2022, 15, 4175–4180.

[31]

Chen, K.; Liu, Y.; Li, M.; Liu, L.; Yu, Q.; Wu, L. Amelioration of enteric dysbiosis by polyoxotungstates in mice gut. J. Inorg. Biochem. 2022, 226, 111654.

[32]

Azambuja, F. D.; Moons, J.; Parac-Vogt, T. N. The dawn of metal-oxo clusters as artificial proteases: From discovery to the present and beyond. Acc. Chem. Res. 2021, 54, 1673–1684.

[33]

Chen, J. J.; Symes, M. D.; Cronin, L. Highly reduced and protonated aqueous solutions of [P2W18O62]6– for on-demand hydrogen generation and energy storage. Nat. Chem. 2018, 10, 1042–1047.

[34]

Liu, L.; Wu, Z. C.; Zheng, Z.; Zhou, Q. J.; Chen, K.; Yin, P. C. Polymerization-induced microphase separation of polymer-polyoxometalate nanocomposites for anhydrous solid state electrolytes. Chin. Chem. Lett. 2022, 33, 4326–4330.

[35]

Chen, K.; Liu, S. Q.; Zhu, W.; Yin, P. C. Surface engineering promoted insulin-sensitizing activities of sub-nanoscale vanadate clusters through regulated pharmacokinetics and bioavailability. Small 2022, 18, 2203957.

[36]

Chen, K.; Dai, G. Y.; Liu, S. Q.; Wei, Y. G. Reducing obesity and inflammation in mice with organically-derivatized polyoxovanadate clusters. Chin. Chem. Lett. 2023, 34, 107638.

[37]

Kennedy, A.; Martinez, K.; Chuang, C. C.; LaPoint, K.; McIntosh, M. Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: Mechanisms of action and implications. J. Nutr. 2009, 139, 1–4.

[38]

Morstein, J.; Capecchi, A.; Hinnah, K.; Park, B.; Petit-Jacques, J.; Van Lehn, R. C.; Reymond, J. L.; Trauner, D. Medium-chain lipid conjugation facilitates cell-permeability and bioactivity. J. Am. Chem. Soc. 2022, 144, 18532–18544.

[39]

Chen, K.; Bayaguud, A.; Li, H.; Chu, Y.; Zhang, H. C.; Jia, H. L.; Zhang, B. F.; Xiao, Z. C.; Wu, P. F.; Liu, T. B. et al. Improved peroxidase-mimic property: Sustainable, high-efficiency interfacial catalysis with H2O2 on the surface of vesicles of hexavanadate-organic hybrid surfactants. Nano Res. 2018, 11, 1313–1321.

[40]

Chen, Q.; Goshorn, D. P.; Scholes, C. P.; Tan, X. L.; Zubieta, J. Coordination compounds of polyoxovanadates with a hexametalate core Chemical and structural characterization of [VV6O13[(OCH2)3CR]2]2–, [VV6O11(OH)2[(OCH2)3CR]2], [VIV4VV2O9(OH)4[(OCH2)3CR]2]2–, and [VIV6O7(OH)6](OCH2)3CR]2]2. J. Am. Chem. Soc. 1992, 114, 4667–4681

[41]

Papsdorf, K.; Miklas, J. W.; Hosseini, A.; Cabruja, M.; Morrow, C. S.; Savini, M.; Yu, Y.; Silva-García, C. G.; Haseley, N. R.; Murphy, L. M. et al. Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids. Nat. Cell Biol. 2023, 25, 672–684.

[42]

Palomer, X.; Pizarro-Delgado, J.; Barroso, E.; Vázquez-Carrera, M. Palmitic and oleic acid: The Yin and Yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol. Metab. 2018, 29, 178–190.

[43]

Davies, M. J.; D'Alessio, D. A.; Fradkin, J.; Kernan, W. N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D. J.; Buse, J. B. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018, 61, 2461–2498.

[44]

Ji, Y. D.; Luo, Z. L.; Gao, H.; Dos Reis, F. C. G.; Bandyopadhyay, G.; Jin, Z. M.; Manda, K. A.; Isaac, R.; Yang, M. X.; Fu, W. X. et al. Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075. Nat. Metab. 2021, 3, 1163–1174.

[45]

Ohno, H.; Shinoda, K.; Spiegelman, B. M.; Kajimura, S. PPARγagonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 2012, 15, 395–404

[46]

Bapat, S. P.; Whitty, C.; Mowery, C. T.; Liang, Y. Q.; Yoo, A.; Jiang, Z. W.; Peters, M. C.; Zhang, L. J.; Vogel, I.; Zhou, C. et al. Obesity alters pathology and treatment response in inflammatory disease. Nature 2022, 604, 337–342.

[47]

Li, Z. A.; Luo, L. L.; Yu, W. X.; Li, P.; Ou, D. F.; Liu, J.; Ma, H. H.; Sun, Q. H.; Liang, A. B.; Huang, C. et al. PPARγphase separates with RXRα at PPREs to regulate target gene expression. Cell Discov. 2022, 8, 37

[48]

Henriksson, J.; Chen, X.; Gomes, T.; Ullah, U.; Meyer, K. B.; Miragaia, R.; Duddy, G.; Pramanik, J.; Yusa, K.; Lahesmaa, R. et al. Genome-wide CRISPR screens in T helper cells reveal pervasive crosstalk between activation and differentiation. Cell 2019, 176, 882–896.e18.

[49]

Nobs, S. P.; Natali, S.; Pohlmeier, L.; Okreglicka, K.; Schneider, C.; Kurrer, M.; Sallusto, F.; Kopf, M. PPARγ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation. J. Exp. Med. 2017, 214, 3015–3035

[50]

Oishi, K.; Uchida, D.; Ishida, N. Circadian expression of FGF21 is induced by PPARα activation in the mouse liver. FEBS Lett. 2008, 582, 3639–3642

Nano Research
Pages 1818-1826
Cite this article:
Chen K, Liu S, Wei Y. Sub-nanosized vanadate hybrid clusters maintain glucose homeostasis and restore treatment response in inflammatory disease in obese mice. Nano Research, 2024, 17(3): 1818-1826. https://doi.org/10.1007/s12274-023-6366-7
Topics:

731

Views

3

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 23 October 2023
Revised: 21 November 2023
Accepted: 23 November 2023
Published: 25 January 2024
© Tsinghua University Press 2024
Return