Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Single crystals of a bismuth-based coordination polymer (CP) with carboxyl-thiol ligands, [Bi(C8H2O4S2)(C2H8N)]n (Bi-DSBDC-DMA, DMBDC = 2,5-disulfur-1,4-dicarboxylate, DMA = dimethylamine), have been successfully synthesized. X-ray diffraction analysis reveals that Bi-DSBDC-DMA possesses a layered structure, with two-dimensional (2D) Bi-DSBDC networks alternating with layers composed of dimethylamine ions. This material demonstrates semiconducting properties, featuring an optical bandgap of 2.2 eV and an electrical conductivity of 2 × 10−8 S/cm. Furthermore, electrodes based on this material exhibit a capacity of 250 mAh/g after 200 cycles for lithium-ion storage.
Yee, K. K.; Reimer, N.; Liu, J.; Cheng, S. Y.; Yiu, S. M.; Weber, J.; Stock, N.; Xu, Z. T. Effective mercury sorption by thiol-laced metal-organic frameworks: In strong acid and the vapor phase. J. Am. Chem. Soc. 2013, 135, 7795–7798.
Li, M. Q.; Wong, Y. L.; Lum, T. S.; Leung, K. S. Y.; Lam, P. K. S.; Xu, Z. T. Dense thiol arrays for metal-organic frameworks: Boiling water stability, Hg removal beyond 2 ppb and facile crosslinking. J. Mater. Chem. A 2018, 6, 14566–14570.
Sun, L.; Miyakai, T.; Seki, S.; Dincă, M. Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): A microporous metal-organic framework with infinite (-Mn-S-)∞ chains and high intrinsic charge mobility. J. Am. Chem. Soc. 2013, 135, 8185–8188.
Sun, L.; Hendon, C. H.; Minier, M. A.; Walsh, A.; Dincă, M. Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). J. Am. Chem. Soc. 2015, 137, 6164–6167.
Diao, Y. X.; Xu, N. F.; Li, M. Q.; Zhu, X. J.; Xu, Z. T. Porphyrin grafting on a mercapto-equipped Zr(IV)-carboxylate framework enhances photocatalytic hydrogen production. Inorg. Chem. 2020, 59, 12643–12649.
Sun, Y. Q.; Ge, S. Z.; Liu, Q.; Zhong, J. C.; Chen, Y. P. A novel 3D chiral bismuth-organic framework with mixed carboxylate, pyridine and thiolate donors exhibiting a semiconductive property. CrystEngComm 2013, 15, 10188–10192.
Gu, S.; Ma, X. X.; Chen, J. J.; Hao, R.; Wang, Z. Q.; Qin, N.; Zheng, W.; Gan, Q. M.; Luo, W.; Li, M. Q. et al. Regulating the radical intermediates by conjugated units in covalent organic frameworks for optimized lithium ion storage. J. Energy Chem. 2022, 69, 428–433.
Chen, J. J.; Gu, S.; Hao, R.; Liu, K.; Wang, Z. Q.; Li, Z. Q.; Yuan, H. M.; Guo, H.; Zhang, K. L.; Lu, Z. G. Unraveling the role of aromatic ring size in tuning the electrochemical performance of small-molecule imide cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 44330–44337.
Wong, Y. L.; Diao, Y. X.; He, J.; Zeller, M.; Xu, Z. T. A thiol-functionalized UiO-67-type porous single crystal: Filling in the synthetic gap. Inorg. Chem. 2019, 58, 1462–1468.
Sun, L.; Hendon, C. H.; Park, S. S.; Tulchinsky, Y.; Wan, R. M.; Wang, F.; Walsh, A.; Dincă, M. Is iron unique in promoting electrical conductivity in MOFs. Chem. Sci. 2017, 8, 4450–4457.
Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J. M. Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 2009, 8, 120–125.
Hong, W. W.; Ge, P.; Jiang, Y. L.; Yang, L.; Tian, Y.; Zou, G. Q.; Cao, X. Y.; Hou, H. S.; Ji, X. B. Yolk–shell-structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity. ACS Appl. Mater. Interfaces 2019, 11, 10829–10840.
Liang, Y. L.; Zhang, P.; Chen, J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem. Sci. 2013, 4, 1330–1337.
Ni, J. F.; Zhao, Y.; Liu, T. T.; Zheng, H. H.; Gao, L. J.; Yan, C. L.; Li, L. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 2014, 4, 1400798.
Zhao, Y.; Gao, D. L.; Ni, J. F.; Gao, L. J.; Yang, J.; Li, Y. One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res. 2014, 7, 765–773.