AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Layered coordination polymer with two-dimensional covalent bismuth-organic networks: Semiconductor and lithium ion storage

Mu-Qing Li1,3,§Yulin Cao3,§Lei Qin4Hua Cheng1( )Weimin Yang2( )Zhouguang Lu3( )
School of Materials Science and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
Industrial Training Center, Shenzhen Polytechnic University, Shenzhen 518055, China
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

§ Mu-Qing Li and Yulin Cao contributed equally to this work.

Show Author Information

Graphical Abstract

A novel two-dimensional (2D) coordination network with Bi–O and Bi–S–Ar chains has been developed and utilized as energy storage.

Abstract

Single crystals of a bismuth-based coordination polymer (CP) with carboxyl-thiol ligands, [Bi(C8H2O4S2)(C2H8N)]n (Bi-DSBDC-DMA, DMBDC = 2,5-disulfur-1,4-dicarboxylate, DMA = dimethylamine), have been successfully synthesized. X-ray diffraction analysis reveals that Bi-DSBDC-DMA possesses a layered structure, with two-dimensional (2D) Bi-DSBDC networks alternating with layers composed of dimethylamine ions. This material demonstrates semiconducting properties, featuring an optical bandgap of 2.2 eV and an electrical conductivity of 2 × 10−8 S/cm. Furthermore, electrodes based on this material exhibit a capacity of 250 mAh/g after 200 cycles for lithium-ion storage.

Electronic Supplementary Material

Download File(s)
12274_2023_6367_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Yee, K. K.; Reimer, N.; Liu, J.; Cheng, S. Y.; Yiu, S. M.; Weber, J.; Stock, N.; Xu, Z. T. Effective mercury sorption by thiol-laced metal-organic frameworks: In strong acid and the vapor phase. J. Am. Chem. Soc. 2013, 135, 7795–7798.

[2]

Li, M. Q.; Wong, Y. L.; Lum, T. S.; Leung, K. S. Y.; Lam, P. K. S.; Xu, Z. T. Dense thiol arrays for metal-organic frameworks: Boiling water stability, Hg removal beyond 2 ppb and facile crosslinking. J. Mater. Chem. A 2018, 6, 14566–14570.

[3]

Sun, L.; Miyakai, T.; Seki, S.; Dincă, M. Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): A microporous metal-organic framework with infinite (-Mn-S-) chains and high intrinsic charge mobility. J. Am. Chem. Soc. 2013, 135, 8185–8188.

[4]

Sun, L.; Hendon, C. H.; Minier, M. A.; Walsh, A.; Dincă, M. Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). J. Am. Chem. Soc. 2015, 137, 6164–6167.

[5]

Diao, Y. X.; Xu, N. F.; Li, M. Q.; Zhu, X. J.; Xu, Z. T. Porphyrin grafting on a mercapto-equipped Zr(IV)-carboxylate framework enhances photocatalytic hydrogen production. Inorg. Chem. 2020, 59, 12643–12649.

[6]
Wu, S. F.; Li, Z.; Li, M. Q.; Diao, Y. X.; Lin, F. T.; Liu, T.; Zhang, J.; Tieu, P.; Gao, W. P.; Qi, F. et al. 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 2020 , 15, 934–940.
[7]

Sun, Y. Q.; Ge, S. Z.; Liu, Q.; Zhong, J. C.; Chen, Y. P. A novel 3D chiral bismuth-organic framework with mixed carboxylate, pyridine and thiolate donors exhibiting a semiconductive property. CrystEngComm 2013, 15, 10188–10192.

[8]
Gu, S.; Chen, J. J.; Hussain, I.; Wang, Z. Q.; Chen, X.; Ahmad, M.; Feng, S. P.; Lu, Z. G.; Zhang, K. L. Modulation of radical intermediates in rechargeable organic batteries. Adv. Mater., in press, https://doi.org/10.1002/adma.202306491.
[9]

Gu, S.; Ma, X. X.; Chen, J. J.; Hao, R.; Wang, Z. Q.; Qin, N.; Zheng, W.; Gan, Q. M.; Luo, W.; Li, M. Q. et al. Regulating the radical intermediates by conjugated units in covalent organic frameworks for optimized lithium ion storage. J. Energy Chem. 2022, 69, 428–433.

[10]

Chen, J. J.; Gu, S.; Hao, R.; Liu, K.; Wang, Z. Q.; Li, Z. Q.; Yuan, H. M.; Guo, H.; Zhang, K. L.; Lu, Z. G. Unraveling the role of aromatic ring size in tuning the electrochemical performance of small-molecule imide cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 44330–44337.

[11]

Wong, Y. L.; Diao, Y. X.; He, J.; Zeller, M.; Xu, Z. T. A thiol-functionalized UiO-67-type porous single crystal: Filling in the synthetic gap. Inorg. Chem. 2019, 58, 1462–1468.

[12]

Sun, L.; Hendon, C. H.; Park, S. S.; Tulchinsky, Y.; Wan, R. M.; Wang, F.; Walsh, A.; Dincă, M. Is iron unique in promoting electrical conductivity in MOFs. Chem. Sci. 2017, 8, 4450–4457.

[13]

Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J. M. Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 2009, 8, 120–125.

[14]

Hong, W. W.; Ge, P.; Jiang, Y. L.; Yang, L.; Tian, Y.; Zou, G. Q.; Cao, X. Y.; Hou, H. S.; Ji, X. B. Yolk–shell-structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity. ACS Appl. Mater. Interfaces 2019, 11, 10829–10840.

[15]

Liang, Y. L.; Zhang, P.; Chen, J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem. Sci. 2013, 4, 1330–1337.

[16]

Ni, J. F.; Zhao, Y.; Liu, T. T.; Zheng, H. H.; Gao, L. J.; Yan, C. L.; Li, L. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 2014, 4, 1400798.

[17]

Zhao, Y.; Gao, D. L.; Ni, J. F.; Gao, L. J.; Yang, J.; Li, Y. One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res. 2014, 7, 765–773.

Nano Research
Pages 2181-2185
Cite this article:
Li M-Q, Cao Y, Qin L, et al. Layered coordination polymer with two-dimensional covalent bismuth-organic networks: Semiconductor and lithium ion storage. Nano Research, 2024, 17(3): 2181-2185. https://doi.org/10.1007/s12274-023-6367-6
Topics:

406

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 29 October 2023
Revised: 24 November 2023
Accepted: 26 November 2023
Published: 28 December 2023
© Tsinghua University Press 2023
Return