AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Advanced nanofabrication for elastic inorganic aerogels

Xiaota Cheng1Xinyi Chang1Fan Wu1( )Yalong Liao2Kai Pan3Hao Fong1Jianyong Yu1Yi-Tao Liu1Bin Ding1( )
Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
Aerospace Institute of Advanced Material and Processing Technology, Beijing 100074, China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

A comprehensive overview of the existing elastic inorganic aerogels is presented based on their structural units, preparation methods, mechanical performances and applications.

Abstract

Inorganic aerogels with low density, high porosity, large specific surface area, and superior mechanical properties are excellent candidate materials in fields such as thermal management, energy, catalysis, and biomedical applications. A comprehensive overview of existing elastic inorganic aerogels is provided, covering their structural units, preparation methods, mechanical performances, and applications. Meanwhile, based on the constituent building blocks and microstructures, a detailed analysis of the mechanical properties and guidelines for elastic design of aerogels is presented. Concluding with a succinct summary of prospective developmental direction, this review deliberates on the challenges and potential opportunities of elastic inorganic aerogels, with the intent of providing a versatile platform for designing new types of elastic inorganic aerogels for various applications.

References

[1]

Liu, Y. T.; Ding, B. Ultralight and superelastic ceramic nanofibrous aerogels: A new vision of an ancient material. Sci. Bull. 2023, 68, 753–755.

[2]

Xu, X.; Zhang, Q. Q.; Hao, M. L.; Hu, Y.; Lin, Z. Y.; Peng, L. L.; Wang, T.; Ren, X. X.; Wang, C.; Zhao, Z. P. et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science 2019, 363, 723–727.

[3]

Olsson, R. T.; Azizi Samir, M. A. S.; Salazar-Alvarez, G.; Belova, L.; Ström, V.; Berglund, L. A.; Ikkala, O.; Nogués, J.; Gedde, U. W. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 2010, 5, 584–588.

[4]

Du, R.; Fan, X. L.; Jin, X. Y.; Hübner, R.; Hu, Y.; Eychmüller, A. Emerging noble metal aerogels: State of the art and a look forward. Matter 2019, 1, 39–56.

[5]

Yan, Z. S.; Liu, X. Y.; Ding, B.; Yu, J. Y.; Si, Y. Interfacial engineered superelastic metal-organic framework aerogels with van-der-Waals barrier channels for nerve agents decomposition. Nat. Commun. 2023, 14, 2116.

[6]

Ziegler, C.; Wolf, A.; Liu, W.; Herrmann, A. K.; Gaponik, N.; Eychmüller, A. Modern inorganic aerogels. Angew. Chem., Int. Ed. 2017, 56, 13200–13221.

[7]

Xu, X.; Fu, S. B.; Guo, J. R.; Li, H.; Huang, Y.; Duan, X. F. Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Mater. Today 2021, 42, 162–177.

[8]

Zhuang, L.; Lu, D.; Zhang, J. J.; Guo, P. F.; Su, L.; Qin, Y. B.; Zhang, P.; Xu, L.; Niu, M.; Peng, K. et al. Highly cross-linked carbon tube aerogels with enhanced elasticity and fatigue resistance. Nat. Commun. 2023, 14, 3178.

[9]

Shi, Q. R.; Zhu, C. Z.; Tian, M. K.; Su, D.; Fu, M. S.; Engelhard, M. H.; Chowdhury, I.; Feng, S.; Du, D.; Lin, Y. H. Ultrafine Pd ensembles anchored-Au2Cu aerogels boost ethanol electrooxidation. Nano Energy 2018, 53, 206–212.

[10]

Kistler, S. S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741.

[11]

Gonçalves, W.; Morthomas, J.; Chantrenne, P.; Perez, M.; Foray, G.; Martin, C. L. Elasticity and strength of silica aerogels: A molecular dynamics study on large volumes. Acta Mater. 2018, 145, 165–174.

[12]

Matter, F.; Luna, A. L.; Niederberger, M. From colloidal dispersions to aerogels: How to master nanoparticle gelation. Nano Today 2020, 30, 100827.

[13]

Wang, L. B.; Song, G. M.; Qiao, X. X.; Xiong, G.; Liu, Y. M.; Zhang, J. C.; Guo, R. L.; Chen, G. X.; Zhou, Z.; Li, Q. F. Facile fabrication of flexible, robust, and superhydrophobic hybrid aerogel. Langmuir 2019, 35, 8692–8698.

[14]

Ghica, M. E.; Almeida, C. M. R.; Fonseca, M.; Portugal, A.; Durães, L. Optimization of polyamide pulp-reinforced silica aerogel composites for thermal protection systems. Polymers 2020, 12, 1278.

[15]

Peng, F.; Jiang, Y. G.; Feng, J.; Cai, H. F.; Feng, J. Z.; Li, L. J. Thermally insulating, fiber-reinforced alumina-silica aerogel composites with ultra-low shrinkage up to 1500 °C. Chem. Eng. J. 2021, 411, 128402.

[16]

Huang, Y. J.; He, S.; Chen, G. N.; Shi, X. J.; Yang, X. B.; Dai, H. M.; Chen, X. F. Mechanical reinforced fiber needle felt/silica aerogel composite with its flammability. J. Sol-Gel Sci. Technol. 2018, 88, 129–140.

[17]

Li, J.; Lei, Y.; Xu, D. D.; Liu, F. H.; Li, J. W.; Sun, A. H.; Guo, J. J.; Xu, G. J. Improved mechanical and thermal insulation properties of monolithic attapulgite nanofiber/silica aerogel composites dried at ambient pressure. J. Sol-Gel Sci. Technol. 2017, 82, 702–711.

[18]

Dou, L. Y.; Cheng, X. T.; Zhang, X. X.; Si, Y.; Yu, J. Y.; Ding, B. Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation. J. Mater. Chem. A 2020, 8, 7775–7783.

[19]

Woignier, T.; Primera, J.; Alaoui, A.; Etienne, P.; Despestis, F.; Calas-Etienne, S. Mechanical properties and brittle behavior of silica aerogels. Gels 2015, 1, 256–275.

[20]

Setyawati, M. I.; Tay, C. Y.; Chia, S. L.; Goh, S. L.; Fang, W.; Neo, M. J.; Chong, H. C.; Tan, S. M.; Loo, S. C. J.; Ng, K. W. et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 2013, 4, 1673.

[21]

Riedle, S.; Wills, J. W.; Miniter, M.; Otter, D. E.; Singh, H.; Brown, A. P.; Micklethwaite, S.; Rees, P.; Jugdaohsingh, R.; Roy, N. C. et al. A murine oral-exposure model for Nano- and micro-particulates: Demonstrating human relevance with food-grade titanium dioxide. Small 2020, 16, 2000486.

[22]

Zhu, Y.; Liu, X. L.; Hu, Y. L.; Wang, R.; Chen, M.; Wu, J. H.; Wang, Y. Y.; Kang, S.; Sun, Y.; Zhu, M. X. Behavior, remediation effect and toxicity of nanomaterials in water environments. Environ. Res. 2019, 174, 54–60.

[23]

Zhang, M.; Wang, Y.; Zhang, Y. Y.; Song, J.; Si, Y.; Yan, J. H.; Ma, C. L.; Liu, Y. T.; Yu, J. Y.; Ding, B. Conductive and elastic TiO2 nanofibrous aerogels: A new concept toward self-supported electrocatalysts with superior activity and durability. Angew. Chem., Int. Ed. 2020, 59, 23252–23260.

[24]

Su, L.; Niu, M.; Lu, D.; Cai, Z. X.; Li, M. Z.; Wang, H. J. A review on the emerging resilient and multifunctional ceramic aerogels. J. Mater. Sci. Technol. 2021, 75, 1–13.

[25]

Quero, F.; Rosenkranz, A. Mechanical performance of binary and ternary hybrid MXene/nanocellulose hydro- and aerogels-a critical review. Adv. Mater. Interfaces 2021, 8, 2100952.

[26]

Moner-Girona, M.; Martínez, E.; Esteve, J.; Roig, A.; Solanas, R.; Molins, E. Micromechanical properties of carbon-silica aerogel composites. Appl. Phys. A 2002, 74, 119–122.

[27]

Chang, X. Y.; Cheng, X. T.; Zhang, H.; Li, W. J.; He, L. J.; Yin, X.; Liu, X. Y.; Yu, J. Y.; Liu, Y. T.; Ding, B. Superelastic carbon aerogels: An emerging material for advanced thermal protection in extreme environments. Adv. Funct. Mater. 2023, 33, 2215168.

[28]

Yan, M. Y.; Cheng, X. D.; Shi, L.; Pan, Y. L.; He, P.; Zhang, Z. X.; Lun, Z.; Fu, Y. Y.; Zhang, H. P. Bioinspired SiC aerogels for super thermal insulation and adsorption with super-elasticity over 100,000 times compressions. Chem. Eng. J. 2023, 455, 140616.

[29]

Benad, A.; Jürries, F.; Vetter, B.; Klemmed, B.; Hübner, R.; Leyens, C.; Eychmüller, A. Mechanical properties of metal oxide aerogels. Chem. Mater. 2018, 30, 145–152.

[30]

Rewatkar, P. M.; Taghvaee, T.; Saeed, A. M.; Donthula, S.; Mandal, C.; Chandrasekaran, N.; Leventis, T.; Shruthi, T. K.; Sotiriou-Leventis, C.; Leventis, N. Sturdy, monolithic SiC and Si3N4 aerogels from compressed polymer-cross-linked silica xerogel powders. Chem. Mater. 2018, 30, 1635–1647.

[31]

Yan, M. Y.; Zhang, H. P.; Fu, Y. Y.; Pan, Y. L.; Lun, Z.; Zhang, Z. X.; He, P.; Cheng, X. D. Implementing an air suction effect induction strategy to create super thermally insulating and superelastic SiC aerogels. Small 2022, 18, 2201039.

[32]

An, L.; Wang, J. Y.; Petit, D.; Armstrong, J. N.; Hanson, K.; Hamilton, J.; Souza, M.; Zhao, D. H.; Li, C. N.; Liu, Y. Z. et al. An all-ceramic, anisotropic, and flexible aerogel insulation material. Nano Lett. 2020, 20, 3828–3835.

[33]

Shu, X. F.; Yan, S. C.; Fang, B.; Song, Y. N.; Zhao, Z. J. A 3D multifunctional nitrogen-doped RGO-based aerogel with silver nanowires assisted self-supporting networks for enhanced electromagnetic wave absorption. Chem. Eng. J. 2023, 451, 138825.

[34]

Li, X.; Zhu, L. T.; Kasuga, T.; Nogi, M.; Koga, H. Frequency-tunable and absorption/transmission-switchable microwave absorber based on a chitin-nanofiber-derived elastic carbon aerogel. Chem. Eng. J. 2023, 469, 144010.

[35]

Deng, Z. J.; Gao, C. Q.; Feng, S.; Zhang, H. F.; Liu, Y. W.; Zhu, Y.; Wang, J. Z.; Xiang, X.; Xie, H. Y. Highly compressible, light-weight and robust Nitrogen-doped graphene composite aerogel for sensitive pressure sensors. Chem. Eng. J. 2023, 471, 144790.

[36]

Cheng, Y. J.; Sun, X. X.; Yang, S.; Wang, D.; Liang, L.; Wang, S. S.; Ning, Y. H.; Yin, W. L.; Li, Y. B. Multifunctional elastic rGO hybrid aerogels for microwave absorption, infrared stealth and heat insulation. Chem. Eng. J. 2023, 452, 139376.

[37]

Yang, G. H.; Huang, Z. Z.; McCarthy, A.; Huang, Y. Y.; Pan, J. Y.; Chen, S. X.; Wan, W. B. Super-elastic carbonized mushroom aerogel for management of uncontrolled hemorrhage. Adv. Sci. 2023, 10, 2207347.

[38]

Xu, X. J.; Wang, R. R.; Nie, P.; Cheng, Y.; Lu, X. Y.; Shi, L. J.; Sun, J. Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS Appl. Mater. Interfaces 2017, 9, 14273–14280.

[39]

Gao, H. L.; Xu, L.; Long, F.; Pan, Z.; Du, Y. X.; Lu, Y.; Ge, J.; Yu, S. H. Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating. Angew. Chem., Int. Ed. 2014, 53, 4561–4566.

[40]

Jung, S. M.; Preston, D. J.; Jung, H. Y.; Deng, Z. T.; Wang, E. N.; Kong, J. Porous Cu nanowire aerosponges from one-step assembly and their applications in heat dissipation. Adv. Mater. 2016, 28, 1413–1419.

[41]

Qian, F.; Troksa, A.; Fears, T. M.; Nielsen, M. H.; Nelson, A. J.; Baumann, T. F.; Kucheyev, S. O.; Han, T. Y. J.; Bagge-Hansen, M. Gold aerogel monoliths with tunable ultralow densities. Nano Lett. 2020, 20, 131–135.

[42]

Yan, P. L.; Brown, E.; Su, Q.; Li, J.; Wang, J.; Xu, C. X.; Zhou, C.; Lin, D. 3D printing hierarchical silver nanowire aerogel with highly compressive resilience and tensile elongation through tunable Poisson’s ratio. Small 2017, 13, 1701756

[43]

Qian, F.; Lan, P. C.; Freyman, M. C.; Chen, W.; Kou, T. Y.; Olson, T. Y.; Zhu, C.; Worsley, M. A.; Duoss, E. B.; Spadaccini, C. M. et al. Ultralight conductive silver nanowire aerogels. Nano Lett. 2017, 17, 7171–7176.

[44]

Zheng, Y. Y.; Yang, J.; Lu, X. B.; Wang, H. L.; Dubale, A. A.; Li, Y.; Jin, Z.; Lou, D. Y.; Sethi, N. K.; Ye, Y. H. et al. Boosting both electrocatalytic activity and durability of metal aerogels via intrinsic hierarchical porosity and continuous conductive network backbone preservation. Adv. Energy Mater. 2021, 11, 2002276.

[45]

Cheng, X. T.; Liu, Y. T.; Si, Y.; Yu, J. Y.; Ding, B. Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning. Nat. Commun. 2022, 13, 2637.

[46]

Guo, F.; Jiang, Y. Q.; Xu, Z.; Xiao, Y. H.; Fang, B.; Liu, Y. J.; Gao, W. W.; Zhao, P.; Wang, H. T.; Gao, C. Highly stretchable carbon aerogels. Nat. Commun. 2018, 9, 881.

[47]

Wang, H.; Lu, W. B.; Di, J. T.; Li, D.; Zhang, X. H.; Li, M.; Zhang, Z. G.; Zheng, L. X.; Li, Q. W. Ultra-lightweight and highly adaptive all-carbon elastic conductors with stable electrical resistance. Adv. Funct. Mater. 2017, 27, 1606220.

[48]

Dou, L.; Si, Y.; Yu, J. Y.; Ding, B. Semi-template based, biomimetic-architectured, and mechanically robust ceramic nanofibrous aerogels for thermal insulation. Nano Res. 2022, 15, 5581–5589.

[49]

Tang, X. W., Zhou, H., Cai, Z. C., Cheng, D. D., He, P. S., Xie, P. W., Zhang, D., Fan, T. X. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 2018, 12, 3502–3511

[50]

Ye, Z. M.; Zhao, B.; Wang, Q.; Chen, K.; Su, M.; Xia, Z. Y.; Han, L.; Li, M.; Kong, X. B.; Shang, Y. Y. et al. Crack-induced superelastic, strength-tunable carbon nanotube sponges. Adv. Funct. Mater. 2023, 33, 2303475.

[51]

Guo, H. L.; Fei, Q. Y.; Lian, M.; Zhu, T. Y.; Fan, W.; Li, Y. M.; Sun, L.; de Jong, F.; Chu, K. B.; Zong, W. et al. Weaving aerogels into 3D ordered hyperelastic hybrid carbon assemblies. Adv. Mater. 2023, 35, 2301418.

[52]

Han, L.; Li, X. J.; Li, F. L.; Zhang, H. J.; Liu, X. Y.; Li, G. Q.; Jia, Q. L.; Zhang, S. W. In-situ preparation of SiC reinforced Si3N4 ceramics aerogels by foam-gelcasting method. Ceram. Int. 2022, 48, 1166–1172

[53]

Liang, C. Y.; Wang, Z. J. Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties. Chem. Eng. J. 2019, 373, 598–605.

[54]

Su, L.; Wang, H. J.; Niu, M.; Dai, S.; Cai, Z. X.; Yang, B. G.; Huyan, H. X.; Pan, X. Q. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 2020, 6, eaay6689.

[55]

Liang, X. P.; Shao, Z. J.; Wu, Z.; Wang, J. Y. Flexible SiC nanowire aerogel with excellent thermal insulation properties. Ceram. Int. 2022, 48, 22172–22178.

[56]

Zong, D. D.; Bai, W. Y.; Yin, X.; Yu, J. Y.; Zhang, S. C.; Ding, B. Gradient pore structured elastic ceramic nanofiber aerogels with cellulose nanonets for noise absorption. Adv. Funct. Mater. 2023, 33, 2301870.

[57]

Tong, Z. W.; Zhang, B. J.; Yu, H. J.; Yan, X. J.; Xu, H.; Li, X. L.; Ji, H. M. Si3N4 Nanofibrous aerogel with in situ growth of SiO x coating and nanowires for oil/water separation and thermal insulation. ACS Appl. Mater. Interfaces 2021, 13, 22765–22773.

[58]

Zhang, X. X.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano 2022, 16, 5487–5495.

[59]

Fu, Q. X.; Si, Y.; Duan, C.; Yan, Z. S.; Liu, L. F.; Yu, J. Y.; Ding, B. Highly carboxylated, cellular structured, and underwater superelastic nanofibrous aerogels for efficient protein separation. Adv. Funct. Mater. 2019, 29, 1808234.

[60]

Zhang, X. X.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chem. Eng. J. 2022, 433, 133628.

[61]

Zhang, X.; Liu, C.; Zhang, X. X.; Si, Y.; Yu, J. Y.; Ding, B. Super strong, shear resistant, and highly elastic lamellar structured ceramic nanofibrous aerogels for thermal insulation. J. Mater. Chem. A 2021, 9, 27415–27423.

[62]

Tang, H.; Gao, P. B.; Bao, Z. H.; Zhou, B.; Shen, J.; Mei, Y. F.; Wu, G. M. Conductive resilient graphene aerogel via magnesiothermic reduction of graphene oxide assemblies. Nano Res. 2015, 8, 1710–1717.

[63]

Yang, G. C.; Yang, Y. W.; Chen, T. D.; Wang, J. Q.; Ma, L. M.; Yang, S. R. Graphene/MXene composite aerogels reinforced by polyimide for pressure sensing. ACS Appl. Nano Mater. 2022, 5, 1068–1077.

[64]

Qin, Y. Y.; Peng, Q. Y.; Ding, Y. J.; Lin, Z. S.; Wang, C. H.; Li, Y.; Xu, F.; Li, J. J.; Yuan, Y.; He, X. D. et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 2015, 9, 8933–8941.

[65]

Wang, C. H.; Chen, X.; Wang, B.; Huang, M.; Wang, B.; Jiang, Y.; Ruoff, R. S. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 2018, 12, 5816–5825.

[66]

Zhao, J. X.; Zhang, Y.; Zhao, X. X.; Wang, R. T.; Xie, J. X.; Yang, C. F.; Wang, J. J.; Zhang, Q. C.; Li, L. L.; Lu, C. H. et al. Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities. Adv. Funct. Mater. 2019, 29, 1900809.

[67]

Qiu, L.; Liu, D. Y.; Wang, Y. F.; Cheng, C.; Zhou, K.; Ding, J.; Truong, V. T.; Li, D. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv. Mater. 2014, 26, 3333–3337.

[68]

Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554–2560.

[69]

Li, X. H.; Liu, P. F.; Li, X. F.; An, F.; Min, P.; Liao, K. N.; Yu, Z. Z. Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 2018, 140, 624–633.

[70]

Lin, Z. Z.; Du, Y. Z.; Chi, C.; Dang, H.; Song, D. X.; Ma, W. G.; Li, Y. S.; Zhang, X. Energy-dependent carrier scattering at weak localizations leading to decoupling of thermopower and conductivity. Carbon 2022, 194, 62–71.

[71]

Pei, S. F.; Wei, Q. W.; Huang, K.; Cheng, H. M.; Ren, W. C. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat. Commun. 2018, 9, 145.

[72]

Yang, W.; Wang, N. N.; Ping, P.; Yuen, A. C. Y.; Li, A.; Zhu, S. E.; Wang, L. L.; Wu, J.; Chen, T. B. Y.; Si, J. Y. et al. Novel 3D network architectured hybrid aerogel comprising epoxy, graphene, and hydroxylated boron nitride nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 40032–40043.

[73]

Wang, J. M.; Liu, D.; Li, Q. X.; Chen, C.; Chen, Z. Q.; Song, P. G.; Hao, J.; Li, Y. W.; Fakhrhoseini, S.; Naebe, M. et al. Lightweight, superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation. ACS Nano 2019, 13, 7860–7870.

[74]

Zeng, X. L.; Ye, L.; Yu, S. H.; Sun, R.; Xu, J. B.; Wong, C. P. Facile preparation of superelastic and ultralow dielectric boron nitride nanosheet aerogels via freeze-casting process. Chem. Mater. 2015, 27, 5849–5855.

[75]

Yin, J.; Li, X. M.; Zhou, J. X.; Guo, W. L. Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano Lett. 2013, 13, 3232–3236.

[76]

Li, X.; Dong, G. Q.; Liu, Z. W.; Zhang, X. T. Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol–gel confined transition strategy. ACS Nano 2021, 15, 4759–4768.

[77]

Wen, D.; Liu, W.; Haubold, D.; Zhu, C. Z.; Oschatz, M.; Holzschuh, M.; Wolf, A.; Simon, F.; Kaskel, S.; Eychmüller, A. Gold aerogels: Three-dimensional assembly of nanoparticles and their use as electrocatalytic interfaces. ACS Nano 2016, 10, 2559–2567.

[78]

Françon, H.; Wang, Z.; Marais, A.; Mystek, K.; Piper, A.; Granberg, H.; Malti, A.; Gatenholm, P.; Larsson, P. A.; Wågberg, L. Ambient-dried, 3D-printable and electrically conducting cellulose nanofiber aerogels by inclusion of functional polymers. Adv. Funct. Mater. 2020, 30, 1909383.

[79]

Toivonen, M. S.; Kaskela, A.; Rojas, O. J.; Kauppinen, E. I.; Ikkala, O. Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices. Adv. Funct. Mater. 2015, 25, 6618–6626.

[80]

Li, K.; Wang, S. N.; Chen, H.; Yang, X.; Berglund, L. A.; Zhou, Q. Self-densification of highly mesoporous wood structure into a strong and transparent film. Adv. Mater. 2020, 32, 2003653.

[81]

Hüsing, N.; Schubert, U. Aerogels-airy materials: Chemistry, structure, and properties. 3.0.CO;2-I">Angew. Chem., Int. Ed. 1998, 37, 22–45.

[82]

Martín-Illán, J. Á.; Rodríguez-San-Miguel, D.; Castillo, O.; Beobide, G.; Perez-Carvajal, J.; Imaz, I.; Maspoch, D.; Zamora, F. Macroscopic ultralight aerogel monoliths of imine-based covalent organic frameworks. Angew. Chem., Int. Ed. 2021, 60, 13969–13977.

[83]

Hou, X. B.; Zhang, R. B.; Fang, D. N. Novel whisker-reinforced Al2O3-SiO2 aerogel composites with ultra-low thermal conductivity. Ceram. Int. 2017, 43, 9547–9551.

[84]

Yu, Z. L.; Qin, B.; Ma, Z. Y.; Huang, J.; Li, S. C.; Zhao, H. Y.; Li, H.; Zhu, Y. B.; Wu, H. A.; Yu, S. H. Superelastic hard carbon nanofiber aerogels. Adv. Mater. 2019, 31, 1900651.

[85]

Kim, K. H.; Tsui, M. N.; Islam, M. F. Graphene-coated carbon nanotube aerogels remain superelastic while resisting fatigue and creep over −100 to +500 °C. Chem. Mater. 2017, 29, 2748–2755.

[86]

Jung, S. M.; Jung, H. Y.; Fang, W. J.; Dresselhaus, M. S.; Kong, J. A facile methodology for the production of in situ inorganic nanowire hydrogels/aerogels. Nano Lett. 2014, 14, 1810–1817.

[87]

Bi, H.; Chen, I. W.; Lin, T. Q.; Huang, F. Q. A new tubular graphene form of a tetrahedrally connected cellular structure. Adv. Mater. 2015, 27, 5943–5949.

[88]

Zhao, J.; Zhang, Y. Z.; Chen, J. Y.; Zhang, W. L.; Yuan, D.; Chua, R.; Alshareef, H. N.; Ma, Y. W. Codoped holey graphene aerogel by selective etching for high-performance sodium-ion storage. Adv. Energy Mater. 2020, 10, 2000099.

[89]

Yang, H. S.; Li, Z. L.; Lu, B.; Gao, J.; Jin, X. T.; Sun, G. Q.; Zhang, G. F.; Zhang, P. P.; Qu, L. T. Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications. ACS Nano 2018, 12, 11407–11416.

[90]

Yang, H. S.; Jin, X. T.; Sun, G. Q.; Li, Z. L.; Gao, J.; Lu, B.; Shao, C. X.; Zhang, X. Q.; Dai, C. L.; Zhang, Z. P. et al. Retarding ostwald ripening to directly cast 3D porous graphene oxide bulks at open ambient conditions. ACS Nano 2020, 14, 6249–6257.

[91]

Su, L.; Wang, H. J.; Niu, M.; Fan, X. Y.; Ma, M. B.; Shi, Z. Q.; Guo, S. W. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano 2018, 12, 3103–3111.

[92]

Su, L.; Wang, H. J.; Jia, S. H.; Dai, S.; Niu, M.; Ren, J. Q.; Lu, X. F.; Cai, Z. X.; Lu, D.; Li, M. Z. et al. Highly stretchable, crack-insensitive and compressible ceramic aerogel. ACS Nano 2021, 15, 18354–18362.

[93]

Ren, B.; Liu, J. J.; Rong, Y. D.; Wang, L.; Lu, Y. J.; Xi, X. Q.; Yang, J. L. Nanofibrous aerogel bulk assembled by cross-linked SiC/SiO x core–shell nanofibers with multifunctionality and temperature-invariant hyperelasticity. ACS Nano 2019, 13, 11603–11612.

[94]

Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.

[95]

Aliev, A. E.; Oh, J.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S. L.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N. et al. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009, 323, 1575–1578.

[96]

Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223.

[97]

Rawson, S. D.; Bayram, V.; McDonald, S. A.; Yang, P.; Courtois, L.; Guo, Y.; Xu, J. Q.; Burnett, T. L.; Barg, S.; Withers, P. J. Tailoring the microstructure of lamellar Ti3C2T x MXene aerogel by compressive straining. ACS Nano 2022, 16, 1896–1908.

[98]

Wang, L.; Zhang, M. Y.; Yang, B.; Tan, J. J.; Ding, X. Y. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 2020, 14, 10633–10647.

[99]

Zhang, H. J.; Lin, C.; Han, T.; Du, F. P.; Zhao, Y. H.; Li, X. P.; Sun, Y. H. Visualization of the formation and 3D porous structure of Ag doped MnO2 aerogel monoliths with high photocatalytic activity. ACS Sustain. Chem. Eng. 2016, 4, 6277–6287.

[100]

Zhao, J.; Pan, R. J.; Sun, R.; Wen, C. Y.; Zhang, S. L.; Wu, B.; Nyholm, L.; Zhang, Z. B. High-conductivity reduced-graphene-oxide/copper aerogel for energy storage. Nano Energy 2019, 60, 760–767.

[101]

Zhu, X. Y.; Yang, C.; Wu, P. W.; Ma, Z. Q.; Shang, Y. Y.; Bai, G. Z.; Liu, X. Y.; Chang, G.; Li, N.; Dai, J. J. et al. Precise control of versatile microstructure and properties of graphene aerogel via freezing manipulation. Nanoscale 2020, 12, 4882–4894.

[102]

Lupi, L.; Hudait, A.; Peters, B.; Grünwald, M.; Mullen, R. G.; Nguyen, A. H.; Molinero, V. Role of stacking disorder in ice nucleation. Nature 2017, 551, 218–222.

[103]

Freytag, A.; Sánchez-Paradinas, S.; Naskar, S.; Wendt, N.; Colombo, M.; Pugliese, G.; Poppe, J.; Demirci, C.; Kretschmer, I.; Bahnemann, D. W. et al. Versatile aerogel fabrication by freezing and subsequent freeze-drying of colloidal nanoparticle solutions. Angew. Chem., Int. Ed. 2016, 55, 1200–1203.

[104]

Fears, T. M.; Hammons, J. A.; Sain, J. D.; Nielsen, M. H.; Braun, T.; Kucheyev, S. O. Ultra-low-density silver aerogels via freeze-substitution. APL Mater. 2018, 6, 091103.

[105]

Zhong, W. B.; Jiang, H. Q.; Yang, L. Y.; Yadav, A.; Ding, X. C.; Chen, Y. L.; Li, M. F.; Sun, G.; Wang, D. Ultra-sensitive piezo-resistive sensors constructed with reduced graphene oxide/polyolefin elastomer (RGO/POE) nanofiber aerogels. Polymers 2019, 11, 1883.

[106]

Alhwaige, A. A.; Herbert, M. M.; Alhassan, S. M.; Ishida, H.; Qutubuddin, S.; Schiraldi, D. A. Laponite/multigraphene hybrid-reinforced poly(vinyl alcohol) aerogels. Polymer 2016, 91, 180–186.

[107]

Li, W. L.; Lu, K.; Walz, J. Y. Freeze casting of porous materials: Review of critical factors in microstructure evolution. Int. Mater. Rev. 2012, 57, 37–60.

[108]

Bai, H.; Chen, Y.; Delattre, B.; Tomsia, A. P.; Ritchie, R. O. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 2015, 1, e1500849.

[109]

Deville, S.; Saiz, E.; Nalla, R. K.; Tomsia, A. P. Freezing as a path to build complex composites. Science 2006, 311, 515–518.

[110]

Zhang, X. X.; Wang, F.; Dou, L.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 °C. ACS Nano 2020, 14, 15616–15625.

[111]

Chen, Z. H.; Zhuo, H.; Hu, Y. J.; Lai, H. H.; Liu, L. X.; Zhong, L. X.; Peng, X. W. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 2020, 30, 1910292.

[112]

Dong, X. Y.; Cao, L. T.; Si, Y.; Ding, B.; Deng, H. B. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 2020, 32, 1908269.

[113]

Li, C.; Ding, Y. W.; Hu, B. C.; Wu, Z. Y.; Gao, H. L.; Liang, H. W.; Chen, J. F.; Yu, S. H. Temperature-invariant superelastic and fatigue resistant carbon nanofiber aerogels. Adv. Mater. 2020, 32, 1904331.

[114]

Lu, D.; Niu, M.; Zhuang, L.; Su, L.; Guo, P. F.; Gao, H. F.; Xu, L.; Cai, Z. X.; Li, M. Z.; Peng, K. et al. Strong, superelastic and multifunctional SiC@ pyrolytic carbon nanofibers aerogels. Carbon 2022, 192, 219–226.

[115]

Si, Y.; Wang, X. Q.; Dou, L.; Yu, J. Y.; Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 2018, 4, eaas8925.

[116]

Min, P.; Li, X. F.; Liu, P. F.; Liu, J.; Jia, X. Q.; Li, X. P.; Yu, Z. Z. Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv. Funct. Mater. 2021, 31, 2103703.

[117]

Moon, I. K.; Yoon, S.; Chun, K. Y.; Oh, J. Highly elastic and conductive N-doped monolithic graphene aerogels for multifunctional applications. Adv. Funct. Mater. 2015, 25, 6976–6984.

[118]

Li, C. W.; Jiang, D. G.; Liang, H.; Huo, B. B.; Liu, C. Y.; Yang, W. R.; Liu, J. Q. Superelastic and arbitrary-shaped graphene aerogels with sacrificial skeleton of melamine foam for varied applications. Adv. Funct. Mater. 2018, 28, 1704674.

[119]

Jiang, D. G.; Zhang, J. Z.; Qin, S.; Wang, Z. Y.; Usman, K. A. S.; Hegh, D.; Liu, J. Q.; Lei, W. W.; Razal, J. M. Superelastic Ti3C2T x MXene-based hybrid aerogels for compression-resilient devices. ACS Nano 2021, 15, 5000–5010.

[120]

Zong, D. D.; Cao, L. T.; Yin, X.; Si, Y.; Zhang, S. C.; Yu, J. Y.; Ding, B. Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nat. Commun. 2021, 12, 6599.

[121]

Dou, L.; Zhang, X. X.; Cheng, X. T.; Ma, Z. M.; Wang, X. Q.; Si, Y.; Yu, J. Y.; Ding, B. Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 2019, 11, 29056–29064.

[122]

Cao, L. T.; Shan, H. R.; Zong, D. D.; Yu, X.; Yin, X.; Si, Y.; Yu, J. Y.; Ding, B. Fire-resistant and hierarchically structured elastic ceramic nanofibrous aerogels for efficient low-frequency noise reduction. Nano Lett. 2022, 22, 1609–1617.

[123]

Zong, D. D.; Bai, W. Y.; Geng, M.; Yin, X.; Yu, J. Y.; Zhang, S. C.; Ding, B. Bubble templated flexible ceramic nanofiber aerogels with cascaded resonant cavities for high-temperature noise absorption. ACS Nano 2022, 16, 13740–13749.

[124]

Zhang, Q. Q.; Lin, D.; Deng, B. W.; Xu, X.; Nian, Q.; Jin, S. Y.; Leedy, K. D.; Li, H.; Cheng, G. J. Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Adv. Mater. 2017, 29, 1605506.

[125]

Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

[126]

Guo, P. F.; Su, L.; Peng, K.; Lu, D.; Xu, L.; Li, M. Z.; Wang, H. J. Additive manufacturing of resilient SiC nanowire aerogels. ACS Nano 2022, 16, 6625–6633.

[127]

Tang, X. W.; Zhou, H.; Cai, Z. C.; Cheng, D. D.; He, P. S.; Xie, P. W.; Zhang, D.; Fan, T. X. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 2018, 12, 3502–3511.

[128]

Jiang, Y. Q.; Xu, Z.; Huang, T. Q.; Liu, Y. J.; Guo, F.; Xi, J. B.; Gao, W. W.; Gao, C. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 2018, 28, 1707024.

[129]

Tetik, H.; Orangi, J.; Yang, G.; Zhao, K. R.; Mujib, S. B.; Singh, G.; Beidaghi, M.; Lin, D. 3D printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance. Adv. Mater. 2022, 34, 2104980

[130]

Kim, K. H.; Oh, Y.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562–566.

[131]

Wang, Z. P.; Wang, Y. S.; Chen, Y. J.; Yousaf, M.; Wu, H. S.; Cao, A. Y.; Han, R. P. S. Reticulate dual-nanowire aerogel for multifunctional applications: A high-performance strain sensor and a high areal capacity rechargeable anode. Adv. Funct. Mater. 2019, 29, 1807467.

[132]

Si, Y.; Yu, J. Y.; Tang, X. M.; Ge, J. L.; Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 2014, 5, 5802.

[133]

Wan, Y. J.; Zhu, P. L.; Yu, S. H.; Sun, R.; Wong, C. P.; Liao, W. H. Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 2018, 14, 1800534.

[134]

Dou, L.; Zhang, X. X.; Shan, H. R.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 2020, 30, 2005928.

[135]

Qiu, L.; Huang, B.; He, Z. J.; Wang, Y. Y.; Tian, Z. M.; Liu, J. Z.; Wang, K.; Song, J. C.; Gengenbach, T. R.; Li, D. Extremely low density and super-compressible graphene cellular materials. Adv. Mater. 2017, 29, 1701553.

[136]

Zhuo, H.; Hu, Y. J.; Tong, X.; Chen, Z. H.; Zhong, L. X.; Lai, H. H.; Liu, L. X.; Jing, S. S.; Liu, Q. Z.; Liu, C. F. et al. A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 2018, 30, 1706705.

[137]

Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W. et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 2016, 7, 12920.

[138]

Yang, M.; Zhao, N. F.; Cui, Y.; Gao, W. W.; Zhao, Q.; Gao, C.; Bai, H.; Xie, T. Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 2017, 11, 6817–6824.

[139]

Long, S. S.; Feng, Y. C.; He, F. L.; Zhao, J. Z.; Bai, T.; Lin, H. B.; Cai, W. L.; Mao, C. W.; Chen, Y. H.; Gan, L. H. et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 2021, 85, 105973.

[140]

Xu, X.; Zhang, Q. Q.; Yu, Y. K.; Chen, W. L.; Hu, H.; Li, H. Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio. Adv. Mater. 2016, 28, 9223–9230.

[141]

Li, G. Y.; Zhu, M. Y.; Gong, W. B.; Du, R.; Eychmüller, A.; Li, T. T.; Lv, W. B.; Zhang, X. T. Boron nitride aerogels with super-flexibility ranging from liquid nitrogen temperature to 1000 °C. Adv. Funct. Mater. 2019, 29, 1900188.

[142]

Sun, J. Z.; Du, H.; Chen, Z. J.; Wang, L. L.; Shen, G. Z. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2022, 15, 3653–3659.

[143]

Wu, C. X.; Zhang, Z. F.; Chen, Z. H.; Jiang, Z. M.; Li, H. Y.; Cao, H. J.; Liu, Y. S.; Zhu, Y. Y.; Fang, Z. B.; Yu, X. R. Rational design of novel ultra-small amorphous Fe2O3 nanodots/graphene heterostructures for all-solid-state asymmetric supercapacitors. Nano Res. 2021, 14, 953–960.

[144]

Zhu, S.; Ni, J. F.; Li, Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 2020, 13, 1825–1841.

[145]

Afroze, J. D.; Tong, L. Y.; Abden, M. J.; Yuan, Z. W.; Chen, Y. Hierarchical honeycomb graphene aerogels reinforced by carbon nanotubes with multifunctional mechanical and electrical properties. Carbon 2021, 175, 312–321.

[146]

Zhang, Q. Q.; Wang, Y.; Zhang, B. Q.; Zhao, K. R.; He, P. G.; Huang, B. Y. 3D superelastic graphene aerogel-nanosheet hybrid hierarchical nanostructures as high-performance supercapacitor electrodes. Carbon 2018, 127, 449–458

[147]

Im, H.; Kim, T.; Song, H.; Choi, J.; Park, J. S.; Ovalle-Robles, R.; Yang, H. D.; Kihm, K. D.; Baughman, R. H.; Lee, H. H. et al. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nat. Commun. 2016, 7, 10600.

[148]

Shang, T. X.; Lin, Z. F.; Qi, C. S.; Liu, X. C.; Li, P.; Tao, Y.; Wu, Z. T.; Li, D. W.; Simon, P.; Yang, Q. H. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019, 29, 1903960.

[149]

An, L.; Armstrong, J. N.; Hu, Y.; Huang, Y. L.; Li, Z.; Zhao, D. H.; Sokolow, J.; Guo, Z. P.; Zhou, C.; Ren, S. Q. High temperature ceramic thermal insulation material. Nano Res. 2022, 15, 6662–6669.

[150]

Hu, F.; Wu, S. Y.; Sun, Y. G. Hollow-structured materials for thermal insulation. Adv. Mater. 2019, 31, 1801001.

[151]

Wang, F.; Dou, L.; Dai, J. W.; Li, Y. Y.; Huang, L. Q.; Si, Y.; Yu, J. Y.; Ding, B. In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew. Chem., Int. Ed. 2020, 59, 8285–8292.

[152]

Zhang, E. S.; Zhang, W. L.; Lv, T.; Li, J.; Dai, J. X.; Zhang, F.; Zhao, Y. M.; Yang, J. Y.; Li, W. J.; Zhang, H. Insulating and robust ceramic nanorod aerogels with high-temperature resistance over 1400 °C. ACS Appl. Mater. Interfaces 2021, 13, 20548–20558.

[153]

Yang, H. S.; Li, Z. L.; Sun, G. Q.; Jin, X. T.; Lu, B.; Zhang, P. P.; Lin, T. Y.; Qu, L. T. Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale. Adv. Funct. Mater. 2019, 29, 1901917.

[154]

Yu, H. J.; Tong, Z. W.; Zhang, B. J.; Chen, Z. W.; Li, X. L.; Su, D.; Ji, H. M. Thermal radiation shielded, high strength, fire resistant fiber/nanorod/aerogel composites fabricated by in-situ growth of TiO2 nanorods for thermal insulation. Chem. Eng. J. 2021, 418, 129342.

[155]

Li, J. J.; Yang, S.; Jiao, P. Z.; Peng, Q. Y.; Yin, W. L.; Yuan, Y.; Lu, H. B.; He, X. D.; Li, Y. B. Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam. Carbon 2020, 157, 427–436.

[156]

Meng, X. Y.; Peng, X. L.; Wei, Y.; Ramakrishna, S.; Sun, Y. M.; Dai, Y. Q. Smart-simulation derived elastic 3D fibrous aerogels with rigid oxide elements and all-in-one multifunctions. Chem. Eng. J. 2022, 437, 135444.

[157]

Jin, X.; Al-Qatatsheh, A.; Subhani, K.; Salim, N. V. Biomimetic and flexible 3D carbon nanofiber networks with fire-resistant and high oil-sorption capabilities. Chem. Eng. J. 2021, 412, 128635.

[158]

Wang, C. H.; He, X. D.; Shang, Y. Y.; Peng, Q. Y.; Qin, Y. Y.; Shi, E. Z.; Yang, Y. B.; Wu, S. T.; Xu, W. J.; Du, S. Y. et al. Multifunctional graphene sheet-nanoribbon hybrid aerogels. J. Mater. Chem. A 2014, 2, 14994–15000.

[159]

Dong, X. Y.; Si, Y.; Chen, C. J.; Ding, B.; Deng, H. B. Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 2021, 15, 12256–12266.

[160]

Kang, W. W.; Cui, Y.; Qin, L.; Yang, Y. Z.; Zhao, Z. B.; Wang, X. Z.; Liu, X. G. A novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel. J. Hazard. Mater. 2020, 392, 122499.

[161]

Zhao, X. L.; Yao, W. Q.; Gao, W. W.; Chen, H.; Gao, C. Wet-spun superelastic graphene aerogel millispheres with group effect. Adv. Mater. 2017, 29, 1701482.

[162]

Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110.

[163]

Bayan, M. A. H.; Dias, Y. J.; Rinoldi, C.; Nakielski, P.; Rybak, D.; Truong, Y. B.; Yarin, A. L.; Pierini, F. Near-infrared light activated core-shell electrospun nanofibers decorated with photoactive plasmonic nanoparticles for on-demand smart drug delivery applications. J. Polym. Sci. 2023, 61, 521–533.

[164]

Zhang, M.; Yang, D. Z.; Zhang, S. Y.; Xu, T.; Shi, Y. Z.; Liu, Y. X.; Chang, W.; Yu, Z. Z. Elastic and hierarchical carbon nanofiber aerogels and their hybrids with carbon nanotubes and cobalt oxide nanoparticles for high-performance asymmetric supercapacitors. Carbon 2020, 158, 873–884.

[165]

Kang, S.; Qiao, S. Y.; Cao, Y. T.; Hu, Z. M.; Yu, J. R.; Wang, Y. Compression strain-dependent tubular carbon nanofibers/graphene aerogel absorber with ultrabroad absorption band. Chem. Eng. J. 2022, 433, 133619.

[166]

Zou, J. H.; Liu, J. H.; Karakoti, A. S.; Kumar, A.; Joung, D.; Li, Q.; Khondaker, S. I.; Seal, S.; Zhai, L. Ultralight multiwalled carbon nanotube aerogel. ACS Nano 2010, 4, 7293–7302.

[167]

Lu, D.; Su, L.; Wang, H. J.; Niu, M.; Xu, L.; Ma, M. B.; Gao, H. F.; Cai, Z. X.; Fan, X. Y. Scalable fabrication of resilient SiC nanowires aerogels with exceptional high-temperature stability. ACS Appl. Mater. Interfaces 2019, 11, 45338–45344.

Nano Research
Pages 8842-8862
Cite this article:
Cheng X, Chang X, Wu F, et al. Advanced nanofabrication for elastic inorganic aerogels. Nano Research, 2024, 17(10): 8842-8862. https://doi.org/10.1007/s12274-023-6369-4
Topics:
Part of a topical collection:

883

Views

3

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 06 September 2023
Revised: 22 November 2023
Accepted: 26 November 2023
Published: 12 January 2024
© Tsinghua University Press 2023
Return