AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Vacancy engineering induced reaction kinetics enhancement of cobalt metaphosphate for pH-universal hydrogen evolution

Yuting Chen1,2Tian Meng1,2Zhicai Xing1Yueying Yan1,2Yang Yang1,2Bohan Yao1,2Dewen Wang1( )Xiurong Yang1,2( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

A heteroatom introduction method is used for constructing the oxygen vacancy (VO)-riched cobalt-ruthenium metaphosphate (CRPO) to the enhanced H2O dissociation and the accelerated hydrogen evolution reaction (HER) kinetics in alkaline and neutral media.

Abstract

Developing efficient pH-universal hydrogen evolution reaction (HER) catalysts is critical in the field of water electrolysis, however, which is severely hampered by the sluggish kinetics in alkaline media. Herein, a ruthenium (Ru) incorporation induced vacancy engineering strategy is firstly proposed to precisely construct oxygen vacancy (VO)-riched cobalt-ruthenium metaphosphate (CRPO) for high-efficiency pH-universal HER. The VO modifies the electronic structure, improves the superficial hydrophilic and gas spillover capacity, it also reduces the coordination number of Ru atoms and regulates the coordination environment. Theoretical calculations indicate that Ru tends to adsorb H2O and H*, whereas VO tends to adsorb OH, which greatly promotes the H2O adsorption and the dissociation of HO–H bond. Ultimately, CRPO-2 exhibits remarkable HER performance, the mass activity is about 18.34, 21.73, and 38.07 times higher than that of Pt/C in acidic, neutral, and alkaline media, respectively, at the same time maintain excellent stability. Our findings may pave a new avenue for the rational design of electrocatalysts toward pH-universal water electrolysis.

Electronic Supplementary Material

Video
12274_2023_6372_MOESM1_ESM.mp4
12274_2023_6372_MOESM2_ESM.mp4
12274_2023_6372_MOESM3_ESM.mp4
Download File(s)
12274_2023_6372_MOESM4_ESM.pdf (2.4 MB)

References

[1]

Chow, J.; Kopp, R. J.; Portney, P. R. Energy resources and global development. Science 2003, 302, 1528–1531.

[2]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[3]

Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260.

[4]

Chen, L.; Zhang, X.; Jiang, W. J.; Zhang, Y.; Huang, L. B.; Chen, Y. Y.; Yang, Y. G.; Li, L.; Hu, J. S. In situ transformation of Cu2O@MnO2 to Cu@Mn(OH)2 nanosheet-on-nanowire arrays for efficient hydrogen evolution. Nano Res. 2018, 11, 1798–1809

[5]
Niu, S.; Tang, T.; Qu, Y. J.; Chen, Y. Y.; Luo, H.; Pan, H.; Jiang, W. J.; Zhang, J. N.; Hu, J. S. Mitigating the reconstruction of metal sulfides for ultrastable oxygen evolution at high current density. CCS Chem., in press, DOI: 10.31635/ccschem.023.202202663.
[6]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[7]

Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.

[8]

Maiti, S.; Maiti, K.; Curnan, M. T.; Kim, K.; Noh, K. J.; Han, J. W. Engineering electrocatalyst nanosurfaces to enrich the activity by inducing lattice strain. Energy Environ. Sci. 2021, 14, 3717–3756.

[9]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[10]

Wang, Y. D.; Wu, W.; Chen, R. Z.; Lin, C. X.; Mu, S. C.; Cheng, N. C. Reduced water dissociation barrier on constructing Pt-Co/CoO x interface for alkaline hydrogen evolution. Nano Res. 2022, 15, 4958–4964.

[11]

Cai, J. Y.; Song, Y.; Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Xie, Y. F.; Zheng, X. S.; Liu, Y.; Lin, Y.; Liu, X. J. et al. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci. Adv. 2020, 6, eaaw8113.

[12]

Tang, T.; Jiang, Z.; Deng, J.; Niu, S.; Yao, Z. C.; Jiang, W. J.; Zhang, L. J.; Hu, J. S. Constructing hierarchical nanosheet-on-microwire FeCo LDH@Co3O4 arrays for high-rate water oxidation. Nano Res. 2022, 15, 10021–10028.

[13]

Sun, Y. Q.; Li, X. L.; Zhang, T.; Xu, K.; Yang, Y. S.; Chen, G. Z.; Li, C. C.; Xie, Y. Nitrogen-doped cobalt diselenide with cubic phase maintained for enhanced alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 21575–21582.

[14]

Wang, J. S.; Xin, S. S.; Xiao, Y.; Zhang, Z. F.; Li, Z. M.; Zhang, W.; Li, C. J.; Bao, R.; Peng, J.; Yi, J. H. et al. Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202202518.

[15]

Chen, Z. G.; Xu, Y. F.; Ding, D.; Song, G.; Gan, X. X.; Li, H.; Wei, W.; Chen, J.; Li, Z. Y.; Gong, Z. M. et al. Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 763.

[16]

Gond, R.; Singh, D. K.; Eswaramoorthy, M.; Barpanda, P. Sodium cobalt metaphosphate as an efficient oxygen evolution reaction catalyst in alkaline solution. Angew. Chem., Int. Ed. 2019, 58, 8330–8335.

[17]

Ahn, H. S.; Tilley, T. D. Electrocatalytic water oxidation at neutral pH by a nanostructured Co(PO3)2 anode. Adv. Funct. Mater. 2013, 23, 227–233.

[18]

Wulan Septiani, N. L.; Kaneti, Y. V.; Fathoni, K. B.; Wang, J.; Ide, Y.; Yuliarto, B.; Nugraha; Dipojono, H. K.; Nanjundan, A. K.; Golberg, D. et al. Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors. Nano Energy 2020, 67, 104270.

[19]

Kim, H.; Park, J.; Park, I.; Jin, K.; Jerng, S. E.; Kim, S. H.; Nam, K. T.; Kang, K. Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 2015, 6, 8253.

[20]

Lv, C. C.; Xu, S. C.; Yang, Q. P.; Huang, Z. P.; Zhang, C. Promoting electrocatalytic activity of cobalt cyclotetraphosphate in full water splitting by titanium-oxide-accelerated surface reconstruction. J. Mater. Chem. A 2019, 7, 12457–12467.

[21]

Wang, Y. H.; Li, H. B.; Yao, Q. X.; Li, R.; Guo, Z. J.; Chen, H. Y.; Qu, K. G.; Li, R. Q. Highly dispersed cobalt metaphosphate nanoparticles embedded in tri-doped carbon as a pH-wide electrocatalyst for hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 6513–6521.

[22]

Chen, D.; Lu, R. H.; Yu, R. H.; Zhao, H. Y.; Wu, D. L.; Yao, Y. T.; Yu, K. S.; Zhu, J. W.; Ji, P. X.; Pu, Z. H. et al. Tuning active metal atomic spacing by filling of light atoms and resulting reversed hydrogen adsorption–distance relationship for efficient catalysis. Nano-Micro Lett. 2023, 15, 168.

[23]

Yang, M. Q.; Wang, J.; Wu, H.; Ho, G. W. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 2018, 14, 1703323.

[24]

Zhang, J. Y.; Qian, J. M.; Ran, J. Q.; Xi, P. X.; Yang, L. J.; Gao, D. Q. Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions. ACS Catal. 2020, 10, 12376–12384.

[25]

Zheng, T. T.; Shang, C. Y.; He, Z. H.; Wang, X. Y.; Cao, C.; Li, H. L.; Si, R.; Pan, B. C.; Zhou, S. M.; Zeng, J. Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting. Angew. Chem., Int. Ed. 2019, 58, 14764–14769.

[26]

Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2021, 14, 868–878.

[27]

Cai, J. L.; Ding, J.; Wei, D. H.; Xie, X.; Li, B. J.; Lu, S. Y.; Zhang, J. M.; Liu, Y. S.; Cai, Q.; Zang, S. Q. Coupling of Ru and O-vacancy on 2D Mo-based electrocatalyst via a solid-phase interface reaction strategy for hydrogen evolution reaction. Adv. Energy Mater. 2021, 11, 2100141.

[28]

Wang, Q.; Xu, H.; Qian, X. Y.; He, G. Y.; Chen, H. Q. Sulfur vacancies engineered self-supported Co3S4 nanoflowers as an efficient bifunctional catalyst for electrochemical water splitting. Appl. Catal. B: Environ. 2023, 322, 122104.

[29]

Zhang, Y. Z.; Zhu, Z. Z.; Guo, X.; Qi, J. Y.; Li, X. Plasma-assisted seconds-level-impregnated preparation of bifunctional N-doped NiCoP with O vacancies enhancement: Driving efficient water splitting. Chem. Eng. J. 2023, 452, 139230.

[30]

Xu, Y. Z.; Wang, L. L.; Liu, X.; Zhang, S. Q.; Liu, C. B.; Yan, D. F.; Zeng, Y. X.; Pei, Y.; Liu, Y. T.; Luo, S. L. Monolayer MoS2 with S vacancies from interlayer spacing expanded counterparts for highly efficient electrochemical hydrogen production. J. Mater. Chem. A 2016, 4, 16524–16530.

[31]

He, J.; Zhou, X.; Xu, P.; Sun, J. M. Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide. Nano Energy 2021, 80, 105540.

[32]

Meng, L. X.; Wang, S. Y.; Cao, F. R.; Tian, W.; Long, R.; Li, L. Doping-induced amorphization, vacancy, and gradient energy band in SnS2 nanosheet arrays for improved photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2019, 58, 6761–6765.

[33]

Chen, Y. T.; Wang, D. W.; Meng, T.; Xing, Z. C.; Yang, X. R. Modulating the electronic structure by ruthenium doping endows cobalt phosphide nanowires with enhanced alkaline hydrogen evolution activity. ACS Appl. Energy Mater. 2022, 5, 697–704.

[34]

Wu, Y. sQ.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C. H.; Liu, M.; Lu, X. H. Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. 2019, 31, 1900178.

[35]

Wei, Z.; Wang, W. C.; Li, W. L.; Bai, X. Q.; Zhao, J. F.; Tse, E. C. M.; Phillips, D. L.; Zhu, Y. F. Steering electron–hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 8236–8242.

[36]

Li, Q. Q.; Huang, F. Z.; Li, S. K.; Zhang, H.; Yu, X. Y. Oxygen vacancy engineering synergistic with surface hydrophilicity modification of hollow Ru doped CoNi-LDH nanotube arrays for boosting hydrogen evolution. Small 2022, 18, 2104323.

[37]

Liu, X.; Wen, B.; Guo, R. T.; Meng, J. S.; Liu, Z.; Yang, W.; Niu, C. J.; Li, Q.; Mai, L. Q. A porous nickel cyclotetraphosphate nanosheet as a new acid-stable electrocatalyst for efficient hydrogen evolution. Nanoscale 2018, 10, 9856–9861.

[38]

He, H. N.; Zeng, L.; Li, X. L.; Hao, J. N.; Luo, D.; He, J.; Kang, W. B.; Wang, Q.; Wang, H. Y.; Zhang, C. H. Selective interface synthesis of cobalt metaphosphate nanosheet arrays motivated by functionalized carbon cloths for fast and durable Na/K-ion storage. ACS Appl. Mater. Interfaces 2021, 13, 34410–34418.

[39]

Huang, J. W.; Sun, Y. H.; Zhang, Y. D.; Zou, G. F.; Yan, C. Y.; Cong, S.; Lei, T. Y.; Dai, X.; Guo, J.; Lu, R. F. et al. A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation. Adv. Mater. 2018, 30, 1705045.

[40]

Yu, X.; Hu, C. W.; Ji, P. X.; Ren, Y. M.; Zhao, H. Y.; Liu, G.; Xu, R.; Zhu, X. D.; Li, Z. Q.; Ma, Y. Q. et al. Optically transparent ultrathin NiCo alloy oxide film: Precise oxygen vacancy modulation and control for enhanced electrocatalysis of water oxidation. Appl. Catal. B: Environ. 2022, 310, 121301.

[41]

Qin, R.; Wang, P. Y.; Li, Z. L.; Zhu, J. X.; Cao, F.; Xu, H. W.; Ma, Q. L.; Zhang, J. Y.; Yu, J.; Mu, S. C. Ru-incorporated nickel diselenide nanosheet arrays with accelerated adsorption kinetics toward overall water splitting. Small 2022, 18, 2105305.

[42]

Zhai, T.; Wan, L. M.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q. Y.; Xia, H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 2017, 29, 1604167.

[43]

Qian, Y. T.; Yu, J. M.; Zhang, Y.; Zhang, F. F.; Kang, Y. B.; Su, C. L.; Shi, H.; Kang, D. J.; Pang, H. Interfacial microenvironment modulation enhancing catalytic kinetics of binary metal sulfides heterostructures for advanced water splitting electrocatalysts. Small Methods 2022, 6, 2101186.

[44]

Akay, Ö.; Poon, J.; Robertson, C.; Abdi, F. F.; Cuenya, B. R.; Giersig, M.; Brinkert, K. Releasing the bubbles: Nanotopographical electrocatalyst design for efficient photoelectrochemical hydrogen production in microgravity environment. Adv. Sci. 2022, 9, 2105380.

[45]

Wu, Z. X.; Zhao, Y.; Wu, H. B.; Gao, Y. X.; Chen, Z.; Jin, W.; Wang, J. S.; Ma, T. Y.; Wang, L. Corrosion engineering on iron foam toward efficiently electrocatalytic overall water splitting powered by sustainable energy. Adv. Funct. Mater. 2021, 31, 2010437.

[46]

Mu, X. Q.; Gu, X. Y.; Dai, S. P.; Chen, J. B.; Cui, Y. J.; Chen, Q.; Yu, M.; Chen, C. Y.; Liu, S. L.; Mu, S. C. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting. Energy Environ. Sci. 2022, 15, 4048–4057.

[47]

Li, L. G.; Bu, L. Z.; Huang, B. L.; Wang, P. T.; Shen, C. Q.; Bai, S. X.; Chan, T. S.; Shao, Q.; Hu, Z. W.; Huang, X. Q. Compensating electronic effect enables fast site-to-site electron transfer over ultrathin RuMn nanosheet branches toward highly electroactive and stable water splitting. Adv. Mater. 2021, 33, 2105308.

[48]

Ma, T.; Cao, H.; Li, S.; Cao, S. J.; Zhao, Z. Y.; Wu, Z. H.; Yan, R.; Yang, C. D.; Wang, Y.; van Aken, P. A. et al. Crystalline lattice-confined atomic Pt in metal carbides to match electronic structures and hydrogen evolution behaviors of platinum. Adv Mater 2022, 34, 2206368.

[49]

McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

[50]

Yan, P.; Yang, T.; Lin, M. X.; Guo, Y. N.; Qi, Z. P.; Luo, Q. Q.; Yu, X. Y. “One stone five birds” plasma activation strategy synergistic with Ru single atoms doping boosting the hydrogen evolution performance of metal hydroxide. Adv. Funct. Mater. 2023, 33, 2301343.

[51]

Lao, M. M.; Li, P.; Jiang, Y. Z.; Pan, H. G.; Dou, S. X.; Sun, W. P. From fundamentals and theories to heterostructured electrocatalyst design: An in-depth understanding of alkaline hydrogen evolution reaction. Nano Energy 2022, 98, 107231.

[52]

Li, W. Q.; Zhang, H.; Zhang, K.; Hu, W. X.; Cheng, Z. Z.; Chen, H. P.; Feng, X.; Peng, T.; Kou, Z. K. Monodispersed ruthenium nanoparticles interfacially bonded with defective nitrogen-and-phosphorus-doped carbon nanosheets enable pH-universal hydrogen evolution reaction. Appl. Catal. B: Environ. 2022, 306, 121095.

[53]

Feng, T. L.; Yu, G. T.; Tao, S. Y.; Zhu, S. J.; Ku, R. Q.; Zhang, R.; Zeng, Q. S.; Yang, M. X.; Chen, Y. X.; Chen, W. H. et al. A highly efficient overall water splitting ruthenium-cobalt alloy electrocatalyst across a wide pH range via electronic coupling with carbon dots. J. Mater. Chem. A 2020, 8, 9638–9645.

Nano Research
Pages 3879-3887
Cite this article:
Chen Y, Meng T, Xing Z, et al. Vacancy engineering induced reaction kinetics enhancement of cobalt metaphosphate for pH-universal hydrogen evolution. Nano Research, 2024, 17(5): 3879-3887. https://doi.org/10.1007/s12274-023-6372-9
Topics:

476

Views

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 01 October 2023
Revised: 14 November 2023
Accepted: 27 November 2023
Published: 29 December 2023
© Tsinghua University Press 2023
Return