AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-efficiency preparation of multifunctional conjugated electrospun graphene doped PVDF/CF yarns for energy harvesting and human movement monitoring in TENG textile

Ting Yang§Chengwei Wan§Xiaoyu ZhangTong LiuLi Niu( )Jian Fang( )Yuqing Liu( )
College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China

§ Ting Yang and Chengwei Wan contributed equally to this work.

Show Author Information

Graphical Abstract

This study compared four polyvinylidene fluoride (PVDF)-based yarn structures and identified the optimized PVDF/graphene (G)-carbon fiber (CF) nanofiber yarn structure, which shows high performance due to the synergistic effect of a high-voltage conjugate electric field and graphene. Considering fundamental triboelectric performance, deformability, wash resistance, and sensitivity, we assessed the textile produced in this study, recognizing its significant potential in energy harvesting and signal transmission.

Abstract

Portable power is an effective solution to realize self-powered sensors for wearable devices, promoting future sustainable development. Membrane-based triboelectric nanogenerators (M-TENGs) have emerged as a promising technology for harvesting biomechanical energy from human motion owing to their advantages, such as simple structure, lightweight design, and efficient energy conversion. However, the poor durability, low adaptability, and un-washability of two-dimensional membrane materials have largely hindered their application in wearable electronics. In this study, we propose a sheath–core polyvinylidene fluoride (PVDF)/graphene (G)-carbon fiber (CF) yarn fabricated via conjugate electrospinning, comprising a commercial CF core and an electrospun graphene-doped PVDF sheath, which improves the fatigue resistance of electrospun nanofiber films under prolonged friction and keeps a high degree of freedom. The resulting electronic textile, woven with the large-scale electrospun PVDF/G-CF yarn, demonstrates a remarkable power density of 25.5 mW·m−2. The tight distribution of PVDF/G nanofibers on the textile surface ensures excellent softness, washability, and durability. Furthermore, the electrospun PVDF/G-CF textile exhibits significant potential in pressure sensing, self-powered operation, and motion detection, making it highly suitable for wearable electronics applications.

Electronic Supplementary Material

Video
12274_2023_6373_MOESM2_ESM.mp4
12274_2023_6373_MOESM3_ESM.mp4
Download File(s)
12274_2023_6373_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Wang, W.; Yu, A. F.; Zhai, J. Y.; Wang, Z. L. Recent progress of functional fiber and textile triboelectric nanogenerators: Towards electricity power generation and intelligent sensing. Adv. Fiber Mater. 2021, 3, 394–412.

[2]

Niu, L.; Peng, X.; Chen, L. J.; Liu, Q.; Wang, T. R.; Dong, K.; Pan, H.; Cong, H. L.; Liu, G. L.; Jiang, G. M. et al. Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection. Nano Energy 2022, 97, 107168.

[3]

He, Y.; Wan, C. W.; Yang, X.; Wang, Y. T.; Fang, J.; Liu, Y. Q. Thermally drawn super-elastic multifunctional fiber sensor for human movement monitoring and joule heating. Adv. Mater. Technol. 2023, 8, 2202079.

[4]

Qin, Y.; Mo, J. L.; Liu, Y. H.; Zhang, S.; Wang, J. L.; Fu, Q.; Wang, S. F.; Nie, S. X. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 2022, 32, 2201846.

[5]

Tian, X.; Dong, S. S.; Yang, M. Y.; Ng, H.; Liu, Y. P.; Hu, H.; Hua, T. Textile-based triboelectric nanogenerators for smart wearable systems: Comfort, integration, and application. Adv. Mater. Technol. 2023, 8, 2201294.

[6]

Guo, R.; Fang, Y. S.; Wang, Z. S.; Libanori, A.; Xiao, X.; Wan, D.; Cui, X. J.; Sang, S. B.; Zhang, W. D.; Zhang, H. L. et al. Deep learning assisted body area triboelectric hydrogel sensor network for infant care. Adv. Funct. Mater. 2022, 32, 2204803.

[7]

Yu, A. F.; Pu, X.; Wen, R. M.; Liu, M. M.; Zhou, T.; Zhang, K.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS Nano 2017, 11, 12764–12771.

[8]

Ma, L. Y.; Zhou, M. J.; Wu, R. H.; Patil, A.; Gong, H.; Zhu, S. H.; Wang, T. T.; Zhang, Y. F.; Shen, S.; Dong, K. et al. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 2020, 14, 4716–4726.

[9]

Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463.

[10]

Liu, M. M.; Cong, Z. F.; Pu, X.; Guo, W. B.; Liu, T.; Li, M.; Zhang, Y.; Hu, W. G.; Wang, Z. L. High-energy asymmetric supercapacitor yarns for self-charging power textiles. Adv. Funct. Mater. 2019, 29, 1806298.

[11]

Cai, J. Y.; Du, M. J.; Li, Z. L. Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 2022, 7, 2101182.

[12]

Li, J. L.; Cai, J. Y.; Yu, J. Y.; Li, Z. L.; Ding, B. The rising of fiber constructed piezo/triboelectric nanogenerators: From material selections, fabrication techniques to emerging applications. Adv. Funct. Mater. 2023, 33, 2303249.

[13]

Li, H. Y.; Su, L.; Kuang, S. Y.; Fan, Y. J.; Wu, Y.; Wang, Z. L.; Zhu, G. Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity. Nano Res. 2017, 10, 785–793.

[14]

Qing, X.; Chen, H. J.; Zeng, F. J.; Jia, K. Y.; Shu, Q.; Wu, J. M.; Xu, H. M.; Lei, W. W.; Liu, D.; Wang, X. G. et al. All-fiber integrated thermoelectrically powered physiological monitoring biosensor. Adv. Fiber Mater. 2023, 5, 1025–1036.

[15]

Jia, Y. P.; Pan, Y. M.; Wang, C. F.; Liu, C. T.; Shen, C. Y.; Pan, C. F.; Guo, Z. H.; Liu, X. H. Flexible Ag microparticle/MXene-based film for energy harvesting. Nano-Micro Lett. 2021, 13, 201.

[16]

Li, Y.; Xiao, S.; Luo, Y.; Tian, S. S.; Tang, J.; Zhang, X. X.; Xiong, J. Q. Advances in electrospun nanofibers for triboelectric nanogenerators. Nano Energy 2022, 104, 107884.

[17]

Chen, C. Y.; Guo, H. Y.; Chen, L. J.; Wang, Y. C.; Pu, X. J.; Yu, W. D.; Wang, F. M.; Du, Z. Q.; Wang, Z. L. Direct current fabric triboelectric nanogenerator for biomotion energy harvesting. ACS Nano 2020, 14, 4585–4594.

[18]

Yin, J.; Reddy, V. S.; Chinnappan, A.; Ramakrishna, S.; Xu, L. Electrospun micro/nanofiber with various structures and functions for wearable physical sensors. Polym. Rev. 2023, 63, 715–762.

[19]

Wu, H. Y.; He, W. C.; Shan, C. C.; Wang, Z.; Fu, S. K.; Tang, Q.; Guo, H. Y.; Du, Y.; Liu, W. L.; Hu, C. G. Achieving remarkable charge density via self-polarization of polar high- k material in a charge-excitation triboelectric nanogenerator. Adv. Mater. 2022, 34, 2109918.

[20]

Wang, Y.; Ren, J.; Ye, C.; Pei, Y.; Ling, S. J. Thermochromic silks for temperature management and dynamic textile displays. Nano-Micro Lett. 2021, 13, 72.

[21]

Jia, T. J.; Wang, Y.; Dou, Y. Y.; Li, Y. W.; Jung de Andrade, M.; Wang, R.; Fang, S. L.; Li, J. J.; Yu, Z.; Qiao, R. et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv. Funct. Mater. 2019, 29, 1808241.

[22]

Ye, C.; Ren, J.; Wang, Y. L.; Zhang, W. W.; Qian, C.; Han, J.; Zhang, C. X.; Jin, K.; Buehler, M. J.; Kaplan, D. L. et al. Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles. Matter 2019, 1, 1411–1425.

[23]

Cao, Y. Y.; Shao, H.; Wang, H. X.; Yang, X.; Gao, Q.; Chen, Q.; Fang, J.; Cheng, T. H.; Lin, T. An easy-to-install textile bending sensor with high sensitivity, linearity, and multidirection direction capability. Adv. Mater. Technol. 2022, 7, 2100830.

[24]

Ma, M. Y.; Kang, Z.; Liao, Q. L.; Zhang, Q.; Gao, F. F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969.

[25]

Fan, W.; Zhang, C.; Liu, Y.; Wang, S. J.; Dong, K.; Li, Y.; Wu, F.; Liang, J. H.; Wang, C. L.; Zhang, Y. Y. An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring. Nano Res. 2023, 16, 11612–11620.

[26]

Lv, X. S.; Liu, Y.; Yu, J. Y.; Li, Z. L.; Ding, B. Smart fibers for self-powered electronic skins. Adv. Fiber Mater. 2023, 5, 401–428.

[27]

Zhu, M. M.; Li, J. L.; Yu, J. Y.; Li, Z. L.; Ding, B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew. Chem., Int. Ed. 2022, 61, e202200226.

[28]

Zhu, M. M.; Yu, J. Y.; Li, Z. L.; Ding, B. Self-healing fibrous membranes. Angew. Chem., Int. Ed. 2022, 61, e202208949.

[29]

Hedau, B.; Kang, B. C.; Ha, T. J. Enhanced triboelectric effects of self-poled MoS2-embedded PVDF hybrid nanocomposite films for bar-printed wearable triboelectric nanogenerators. ACS Nano 2022, 16, 18355–18365.

[30]

Ippili, S.; Jella, V.; Thomas, A. M.; Yoon, C.; Jung, J. S.; Yoon, S. G. ZnAl-LDH-induced electroactive β-phase and controlled dielectrics of PVDF for a high-performance triboelectric nanogenerator for humidity and pressure sensing applications. J. Mater. Chem. A 2021, 9, 15993–16005.

[31]

Chen, Y.; Ling, Y. L.; Yin, R. Fiber/yarn-based triboelectric nanogenerators (TENGs): Fabrication strategy, structure, and application. Sensors 2022, 22, 9716.

[32]

Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.

[33]

Kavarthapu, V. S.; Graham, S. A.; Manchi, P.; Paranjape, M. V.; Yu, J. S. Electrospun ZnSnO3/PVDF-HFP nanofibrous triboelectric films for efficient mechanical energy harvesting. Adv. Fiber Mater. 2023, 5, 1685–1698.

[34]

Babu, A.; Aazem, I.; Walden, R.; Bairagi, S.; Mulvihill, D. M.; Pillai, S. C. Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chem. Eng. J. 2023, 452, 139060.

[35]

Walden, R.; Aazem, I.; Babu, A.; Pillai, S. C. Textile-triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices. Chem. Eng. J. 2023, 451, 138741.

[36]

Yang, Y.; Yang, Y. C.; Huang, J. Y.; Li, S. H.; Meng, Z. Y.; Cai, W. L.; Lai, Y. K. Electrospun nanocomposite fibrous membranes for sustainable face mask based on triboelectric nanogenerator with high air filtration efficiency. Adv. Fiber Mater. 2023, 5, 1505–1518.

[37]

Pandey, P.; Thapa, K.; Ojha, G. P.; Seo, M. K.; Shin, K. H.; Kim, S. W.; Sohn, J. I. Metal-organic frameworks-based triboelectric nanogenerator powered visible light communication system for wireless human–machine interactions. Chem. Eng. J. 2023, 452, 139209.

[38]

Cao, R.; Wang, J. N.; Zhao, S. Y.; Yang, W.; Yuan, Z. Q.; Yin, Y. Y.; Du, X. Y.; Li, N. W.; Zhang, X. L.; Li, X. Y. et al. Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring. Nano Res. 2018, 11, 3771–3779.

[39]

Kang, L.; Ma, C. X.; Wang, J.; Gao, X. P.; An, G. C. PTFE/PVA-PVDF conjugated electrospun nanofiber membrane with triboelectric effect used in face mask. Fibers Polym. 2023, 24, 1975–1982

[40]

Zhao, P. F.; Soin, N.; Prashanthi, K.; Chen, J. K.; Dong, S. R.; Zhou, E. P.; Zhu, Z. G.; Narasimulu, A. A.; Montemagno, C. D.; Yu, L. Y. et al. Emulsion electrospinning of polytetrafluoroethylene (PTFE) nanofibrous membranes for high-performance triboelectric nanogenerators. ACS Appl. Mater. Interfaces 2018, 10, 5880–5891.

[41]

Wang, H. L.; Guo, Z. H.; Pu, X.; Wang, Z. L. Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 2022, 14, 86.

[42]

Xiong, J. Q.; Lee, P. S. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile. Sci. Technol. Adv. Mater. 2019, 20, 837–857.

[43]

Dong, K.; Peng, X.; Cheng, R. W.; Ning, C.; Jiang, Y.; Zhang, Y. H.; Wang, Z. L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv. Mater. 2022, 34, 2109355.

[44]

Zhang, L. S.; Fairbanks, M.; Andrew, T. L. Rugged textile electrodes for wearable devices obtained by vapor coating off-the-shelf, plain-woven fabrics. Adv. Funct. Mater. 2017, 27, 1700415.

[45]

Dong, K.; Peng, X.; An, J.; Wang, A. C.; Luo, J. J.; Sun, B. Z.; Wang, J.; Wang, Z. L. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 2020, 11, 2868.

[46]

Ma, L. Y.; Wu, R. H.; Liu, S.; Patil, A.; Gong, H.; Yi, J.; Sheng, F. F.; Zhang, Y. Z.; Wang, J.; Wang, J. et al. A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv. Mater. 2020, 32, 2003897.

[47]

Cheng, M. F.; Liu, X.; Li, Z. K.; Zhao, Y. L.; Miao, X.; Yang, H. X.; Jiang, T.; Yu, A. F.; Zhai, J. Y. Multiple textile triboelectric nanogenerators based on UV-protective, radiative cooling, and antibacterial composite yarns. Chem. Eng. J. 2023, 468, 143800.

[48]

Chen, L. J.; Chen, C. Y.; Jin, L.; Guo, H. Y.; Wang, A. C.; Ning, F. G.; Xu, Q. L.; Du, Z. Q.; Wang, F. M.; Wang, Z. L. Stretchable negative Poisson’s ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor. Energy Environ. Sci. 2021, 14, 955–964.

[49]

Ye, C.; Xu, Q. F.; Ren, J.; Ling, S. J. Violin string inspired core–sheath silk/steel yarns for wearable triboelectric nanogenerator applications. Adv. Fiber Mater. 2020, 2, 24–33.

[50]

Guan, X. Y.; Xu, B. G.; Wu, M. J.; Jing, T. T.; Yang, Y. J.; Gao, Y. Y. Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy 2021, 80, 105549.

[51]

Aliyana, A. K.; Stylios, G. A review on the progress in core-spun yarns (CSYs) based textile TENGs for real-time energy generation, capture and sensing. Adv. Sci. 2023, 10, 2304232.

[52]

Andrew, T. L.; Zhang, L. S.; Cheng, N. Y.; Baima, M.; Kim, J. J.; Allison, L.; Hoxie, S. Melding vapor-phase organic chemistry and textile manufacturing to produce wearable electronics. Acc. Chem. Res. 2018, 51, 850–859.

[53]
Zhu, C. J.; Zheng, J. X.; Fu, J. Electrospinning nanofibers as stretchable sensors for wearable devices. Macromol. Biosci., in press, DOI: 10.1002/mabi.202300274.
[54]

Dong, K.; Deng, J. N.; Zi, Y. L.; Wang, Y. C.; Xu, C.; Zou, H. Y.; Ding, W. B.; Dai, Y. J.; Gu, B. H.; Sun, B. Z. et al. 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 2017, 29, 1702648

[55]

Zhou, M. J.; Xu, F.; Ma, L. Y.; Luo, Q. L.; Ma, W. W.; Wang, R. W.; Lan, C. T.; Pu, X.; Qin, X. H. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems. Nano Energy 2022, 104, 107885.

[56]

Ye, C.; Yang, S.; Ren, J.; Dong, S. J.; Cao, L. T.; Pei, Y.; Ling, S. J. Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception. ACS Nano 2022, 16, 4415–4425.

[57]

Zhang, D. W.; Yang, W. F.; Gong, W. W.; Ma, W.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Abrasion resistant/waterproof stretchable triboelectric yarns based on Fermat spirals. Adv. Mater. 2021, 33, 2100782.

[58]

Busolo, T.; Szewczyk, P. K.; Nair, M.; Stachewicz, U.; Kar-Narayan, S. Triboelectric yarns with electrospun functional polymer coatings for highly durable and washable smart textile applications. ACS Appl. Mater. Interfaces 2021, 13, 16876–16886.

[59]

Chen, Q.; Akram, W.; Cao, Y. Y.; Ge, C.; Lin, T.; Fang, J. Recent progress in the fabrication and processing of triboelectric yarns. Carbon Neutralization 2023, 2, 63–89.

[60]

Kim, W. J.; Cho, S.; Hong, J.; Hong, J. P. Geometrically versatile triboelectric yarn-based harvesters via carbon nanotubes-elastomer composites. Compos. Sci. Technol. 2022, 219, 109247.

[61]

Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.

[62]

Lacks, D. J.; Sankaran, R. M. Contact electrification of insulating materials. J. Phys. D: Appl. Phys. 2011, 44, 453001.

[63]

Yousry, Y. M.; Yao, K.; Mohamed, A. M.; Liew, W. H.; Chen, S. T.; Ramakrishna, S. Theoretical model and outstanding performance from constructive piezoelectric and triboelectric mechanism in electrospun PVDF fiber film. Adv. Funct. Mater. 2020, 30, 1910592.

[64]

Huang, T.; Yang, S. W.; He, P.; Sun, J.; Zhang, S.; Li, D. D.; Meng, Y.; Zhou, J. S.; Tang, H. X.; Liang, J. R. et al. Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors. ACS Appl. Mater. Interfaces 2018, 10, 30732–30740.

[65]

Gunawardhana, K. R. S.; Wanasekara, N. D.; Wijayantha, K. G.; Dharmasena, R. D. I. Scalable textile manufacturing methods for fabricating triboelectric nanogenerators with balanced electrical and wearable properties. ACS Appl. Electron. Mater. 2022, 4, 678–688.

[66]

Li, Z. L.; Shen, J. L.; Abdalla, I.; Yu, J. Y.; Ding, B. Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 2017, 36, 341–348.

[67]

Xia, G. T.; Huang, Y. N.; Li, F. J.; Wang, L. C.; Pang, J. B.; Li, L. W.; Wang, K. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Front. Chem. Sci. Eng. 2020, 14, 1039–1051.

[68]

Mondal, B.; Mishra, H. K.; Sengupta, D.; Kumar, A.; Babu, A.; Saini, D.; Gupta, V.; Mandal, D. Lead-free perovskite Cs3Bi2I9-derived electroactive PVDF composite-based piezoelectric nanogenerators for physiological signal monitoring and piezo-phototronic-aided strain modulated photodetectors. Langmuir 2022, 38, 12157–12172.

[69]

Rasel, M. S.; Maharjan, P.; Salauddin, M.; Rahman, M. T.; Cho, H. O.; Kim, J. W.; Park, J. Y. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 2018, 49, 603–613.

[70]

Li, Y. Y.; Zhang, Y. H.; Yi, J.; Peng, X.; Cheng, R. W.; Ning, C.; Sheng, F. F.; Wang, S.; Dong, K.; Wang, Z. L. Large-scale fabrication of core–shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat 2022, 4, e12191.

[71]

Lou, M. N.; Abdalla, I.; Zhu, M. M.; Wei, X. D.; Yu, J. Y.; Li, Z. L.; Ding, B. Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring. ACS Appl. Mater. Interfaces 2020, 12, 19965–19973.

[72]

Roy, K.; Ghosh, S. K.; Sultana, A.; Garain, S.; Xie, M. Y.; Bowen, C. R.; Henkel, K.; Schmeiβer, D.; Mandal, D. A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers. ACS Appl. Nano Mater. 2019, 2, 2013–2025.

Nano Research
Pages 4478-4488
Cite this article:
Yang T, Wan C, Zhang X, et al. High-efficiency preparation of multifunctional conjugated electrospun graphene doped PVDF/CF yarns for energy harvesting and human movement monitoring in TENG textile. Nano Research, 2024, 17(5): 4478-4488. https://doi.org/10.1007/s12274-023-6373-8
Topics:

493

Views

6

Crossref

7

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 09 October 2023
Revised: 23 November 2023
Accepted: 27 November 2023
Published: 28 December 2023
© Tsinghua University Press 2023
Return