Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Tandem catalysis, capable of decoupling individual steps, provides a feasible way to build a high-efficiency CO2 electro-conversion system for multicarbons (C2+). The construction of electrocatalytic materials is one of focusing issues. Herein, we fabricated a single atom involved multivalent oxide-derived Cu composite material and found it inclined to reconstruct into oxygen-deficient multiphase Cu based species hybridized with monatomic Ni on N doped C matrix. In this prototype, rapid CO generation and C−C coupling are successively achieved on NiN4 sites and surface amorphized Cu species with defects, resembling a micro-production line. In this way, the in situ formed tandem catalyst exhibited a high Faradaic efficiency (FE) of ~ 78% for C2+ products along with satisfactory durability over 50 h. Particularly, the reconstruction-induced amorphous layer with abundant asymmetric sites should be favorable to improve the ethanol selectivity (FE: 63%), which is about 10 times higher than that of the non-tandem Cu-based contrast material. This work offers a new approach for manipulating tandem catalyst systems towards enhancing C2+ products.
Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.
Kong, X. D.; Zhao, J. K.; Xu, Z. F.; Wang, Z. Y.; Wu, Y. Y.; Shi, Y. H.; Li, H. L.; Ma, C. X.; Zeng, J.; Geng, Z. G. Dynamic metal–ligand coordination boosts CO2 electroreduction. J. Am. Chem. Soc. 2023, 145, 14903–14911.
Wang, Y. C.; Wang, Q. C.; Wu, J.; Zhao, X.; Xiong, Y.; Luo, F. H.; Lei, Y. P. Asymmetric atomic sites make different: Recent progress in electrocatalytic CO2 reduction. Nano Energy 2022, 103, 107815.
Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.
Su, J. J.; Liu, Y.; Song, Y.; Huang, L. B.; Guo, W. H.; Cao, X. H.; Dou, Y. B.; Cheng, L.; Li, G.; Hu, Q. S. et al. Recent development of nanomaterials for carbon dioxide electroreduction. SmartMat 2022, 3, 35–53.
Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, 9120021.
Li, Z.; Wu, R.; Zhao, L.; Li, P. B.; Wei, X. X.; Wang, J. J.; Chen, J. S.; Zhang, T. R. Metal–support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Res. 2021, 14, 3795–3809.
Yang, D. R.; Ni, B.; Wang, X. Heterogeneous catalysts with well-defined active metal sites toward CO2 electrocatalytic reduction. Adv. Energy Mater. 2020, 10, 2001142.
Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.
Cao, B.; Li, F. Z.; Gu, J. Designing Cu-based tandem catalysts for CO2 electroreduction based on mass transport of CO intermediate. ACS Catal. 2022, 12, 9735–9752.
Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.
Xia, T.; Wan, J. W.; Yu, R. B. Progress of the structure–property correlation of heteroatomic coordination structured carbon-based single-atom electrocatalysts. Chem. J. Chin. Univ. 2022, 43, 20220162.
Tan, X. Y.; Yu, C.; Ren, Y. W.; Cui, S.; Li, W. B.; Qiu, J. S. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ. Sci. 2021, 14, 765–780.
Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.
Wang, X. L.; De Araújo, J. F.; Ju, W.; Bagger, A.; Schmies, H.; Kühl, S.; Rossmeisl, J.; Strasser, P. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 2019, 14, 1063–1070.
Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew. Chem., Int. Ed. 2021, 60, 25485–25492.
Zhang, Y.; Li, P.; Zhao, C. M.; Zhou, G.; Zhou, F. Y.; Zhang, Q. T.; Su, C. L.; Wu, Y. E. Multicarbons generation factory: CuO/Ni single atoms tandem catalyst for boosting the productivity of CO2 electrocatalysis. Sci. Bull. 2022, 67, 1679–1687.
Yan, T. T.; Wang, P.; Sun, W. Y. Single-site metal-organic framework and copper foil tandem catalyst for highly selective CO2 electroreduction to C2H4. Small 2023, 19, 2206070.
Hu, X. S.; Li, J. Y.; Zhou, Z. Q.; Wen, L. Y. Tandem electroreduction of CO2 to programmable acetate and syngas via single-nickel-atom-encapsulated copper nanocatalysts. ACS Materials Lett. 2023, 5, 85–94.
Lai, W. C.; Ma, Z. S.; Zhang, J. W.; Yuan, Y. L.; Qiao, Y.; Huang, H. W. Dynamic evolution of active sites in electrocatalytic CO2 reduction reaction: Fundamental understanding and recent progress. Adv. Funct. Mater. 2022, 32, 2111193.
Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.
Zhang, A.; Liang, Y. X.; Li, H. P.; Zhang, B. Y.; Liu, Z. H.; Chang, Q. X.; Zhang, H.; Zhu, C. F.; Geng, Z. G.; Zhu, W. G. et al. In-situ surface reconstruction of InN nanosheets for efficient CO2 electroreduction into formate. Nano Lett. 2020, 20, 8229–8235
Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.
Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem., Int. Ed. 2006, 45, 1557–1559.
Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi OM. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.
Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived n-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.
Han, L.; Tian, B. Q.; Gao, X. X.; Zhong, Y.; Wang, S. N.; Song, S. C.; Wang, Z. L.; Zhang, Y.; Kuang, Y.; Sun, X. M. Copper nanowire with enriched high-index facets for highly selective CO2 reduction. SmarMat 2022, 3, 142–150.
Enayati, M. H.; Mohamed, F. A. Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int. Mater. Rev. 2014, 59, 394–416.
Xiong, W. F.; Li, H. F.; Wang, H. M.; Yi, J. D.; You, H. H.; Zhang, S. Y.; Hou, Y.; Cao, M. N.; Zhang, T.; Cao, R. Hollow mesoporous carbon sphere loaded Ni-N4 single-atom: Support structure study for CO2 electrocatalytic reduction catalyst. Small 2020, 16, 2003943.
Li, H. D.; Han, Y.; Zhao, H.; Qi, W. J.; Zhang, D.; Yu, Y. D.; Cai, W. W.; Li, S. X.; Lai, J. P.; Huang, B. L. et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 2020, 11, 5437.
Zheng, S. J.; Cheng, H.; Yu, J.; Bie, Q.; Chen, J. D.; Wang, F.; Wu, R.; Blackwood, D. J.; Chen, J. S. Three-dimensional ordered porous N-doped carbon-supported accessible Ni-N x active sites for efficient CO2 electroreduction. Rare Met. 2023, 42, 1800–1807.
Zhou, J. S.; Song, H. H.; Ma, L. L.; Chen, X. H. Magnetite/graphene nanosheet composites: Interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Adv. 2011, 1, 782–791.
Qu, M.; Chen, Z.; Sun, Z. Y.; Zhou, D. N.; Xu, W. J.; Tang, H.; Gu, H. F.; Liang, T.; Hu, P. F.; Li, G. W. et al. Rational design of asymmetric atomic Ni-P1N3 active sites for promoting electrochemical CO2 reduction. Nano Res. 2023, 16, 2170–2176.
Liang, S. Y.; Zhang, T. Y.; Zheng, Y.; Xue, T. S.; Wang, Z.; Wang, Q.; He, H. Maximizing the utilization of single-atom sites on carbon-based catalysts for efficient CO2 electroreduction with ultrahigh turnover frequency. Appl. Catal. B Environ. 2023, 333, 122801.
Zhang, J. F.; Wang, Y.; Li, Z. Y.; Xia, S.; Cai, R.; Ma, L.; Zhang, T. Y.; Ackley, J.; Yang, S. Z.; Wu, Y. C. et al. Grain boundary-derived Cu+/Cu0 interfaces in CuO nanosheets for low overpotential carbon dioxide electroreduction to ethylene. Adv. Sci. (Weinh.) 2022, 9, 2200454.
Chen, Y. X.; Guo, Y. H.; Hu, H. X.; Wang, S.; Lin, Y.; Huang, Y. C. Achieving low temperature formaldehyde oxidation: A case study of NaBH4 reduced cobalt oxide nanowires. Inorg. Chem. Commun. 2017, 82, 20–23.
Gao, D. F.; Zegkinoglou, I.; Divins, N. J.; Scholten, F.; Sinev, I.; Grosse, P.; Cuenya, B. R. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 2017, 11, 4825–4831.
Zhao, S.Y.; Liu, A. H.; Li, Y. H.; Wen, Y. Y.; Gao, X. Q.; Chen, Q. L. Boosting the electrocatalytic CO2 reduction reaction by nanostructured metal materials via defects engineering. Nanomaterials (Basel) 2022, 12, 2389.
Liu, J. Z.; Nai, J. W.; You, T. T.; An, P. F.; Zhang, J.; Ma, G. S.; Niu, X. G.; Liang, C. Y.; Yang, S. H.; Guo, L. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 2018, 14, 1703514.
Mu, S. J.; Lu, H. L.; Wu, Q. B.; Li, L.; Zhao, R. J.; Long, C.; Cui, C. H. Hydroxyl radicals dominate reoxidation of oxide-derived Cu in electrochemical CO2 reduction. Nat. Commun. 2022, 13, 3694.
Liu, J. Z.; Guo, L. In situ self-reconstruction inducing amorphous species: A key to electrocatalysis. Matter 2021, 4, 2850–2873
Gu, Z. X.; Yang, N.; Han, P.; Kuang, M.; Mei, B. B.; Jiang, Z.; Zhong, J.; Li, L.; Zheng, G. Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods 2018, 3, 1800449.
Periasamy, A. P.; Ravindranath, R.; Kumar, S. M. S.; Wu, W. P.; Jian, T. R.; Chang, H. T. Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol. Nanoscale 2018, 10, 11869–11880.
Liu, J. Z.; Hu, Q.; Wang, Y.; Yang, Z.; Fan, X. Y.; Liu, L. M.; Guo, L. Achieving delafossite analog by in situ electrochemical self-reconstruction as an oxygen-evolving catalyst. Proc. Natl. Acad. Sci. USA 2020, 117, 21906–21913.
Wang, H. Z.; Bi, X. Z.; Yan, Y. F.; Zhao, Y. Z.; Yang, Z. X.; Ning, H.; Wu, M. B. Efficient electrocatalytic reduction of CO2 to ethanol enhanced by spacing effect of Cu-Cu in Cu2− x Se nanosheets. Adv. Funct. Mater. 2023, 33, 2214946.
Su, X. Z.; Jiang, Z. L.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X. et al. Complementary Operando spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322.
Zhang, T. T.; Yuan, B. W.; Wang, W. L.; He, J.; Xiang, X. Tailoring *H intermediate coverage on the CuAl2O4/CuO catalyst for enhanced electrocatalytic CO2 reduction to ethanol. Angew. Chem., Int. Ed. 2023, 62, e202302096.
Guo, C. Y.; Guo, Y. H.; Shi, Y. M.; Lan, X. N.; Wang, Y. T.; Yu, Y. F.; Zhang, B. Electrocatalytic reduction of CO2 to ethanol at close to theoretical potential via engineering abundant electron-donating Cu δ + species. Angew. Chem., Int. Ed. 2022, 61, e202205909.
Chen, J. Y.; Wang, D. S.; Yang, X. X.; Cui, W. J.; Sang, X. H.; Zhao, Z. L.; Wang, L. G.; Li, Z. J.; Yang, B.; Lei, L. C. et al. Accelerated transfer and spillover of carbon monoxide through tandem catalysis for kinetics-boosted ethylene electrosynthesis. Angew. Chem., Int. Ed. 2023, 62, e202215406.