Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

A general and facile calcination method to synthesize single-site catalysts for highly efficient electrochemical CO2 reduction

Rui Sui1Bingyan Wang2Yongsheng Wang3Jiajing Pei4Wei Zhu3Wenxing Chen5Chunhui Li2()Ailing Sun2()Zhongbin Zhuang3
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

View original image Download original image
We designed a facile and scalable strategy for Ni-based single-atom catalyst (Ni-N1C3), which exhibits excellent CO2 reduction reaction (CO2RR) performance with CO Faradic efficiency (FECO) above 98% in a wide potential range from −0.7 to −1.3 V versus reversible hydrogen electrode (RHE).

Abstract

The electrochemical CO2 reduction reaction (CO2RR) has received widespread attention as a promising method for producing sustainable chemicals and mitigating the global warming. Here, we demonstrate a general and facile synthetic route for the metal-nitrogen-carbon (M-N-C) type catalyst by simply calcinating metal acetate and urea with commercial carbon black, which have potential application in CO2RR. The synthesized Ni-NC-600 catalyst has the structure of single Ni atom coordinated with one N atom and three C atoms (Ni-N1C3), which is suggested by X-ray absorption spectroscopy. The Ni-NC-600 catalyst exhibits high CO2RR catalytic performance and a high CO Faraday efficiency above 98% in a wide potential range from −0.7 to −1.3 V (vs. reversible hydrogen electrode (RHE)), superior to most of the reported Ni-N-C catalysts. This work has developed a facile strategy to synthesize high performance CO2RR catalyst.

Electronic Supplementary Material

Download File(s)
12274_2023_6378_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Wang, S. W.; Wang, L. G.; Wang, D. S.; Li, Y. D. Recent advances of single-atom catalysts in CO2 conversion. Energy Environ. Sci. 2023, 16, 2759–2803.

[2]

Hernández, S.; Amin Farkhondehfal, M.; Sastre, F.; Makkee, M.; Saracco, G.; Russo, N. Syngas production from electrochemical reduction of CO2: Current status and prospective implementation. Green Chem. 2017, 19, 2326–2346.

[3]

Shen, J.; Wang, D. S. How to select heterogeneous CO2 reduction electrocatalyst. Nano. Res. Energy 2024, 3, e9120096.

[4]

Duan, X. C.; Xu, J. T.; Wei, Z. X.; Ma, J. M.; Guo, S. J.; Wang, S. Y.; Liu, H. K.; Dou, S. X. Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 2017, 29, 1701784.

[5]

Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.

[6]

Pan, F. P.; Deng, W.; Justiniano, C.; Li, Y. Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl. Catal. B: Environ. 2018, 226, 463–472.

[7]

Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

[8]

Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.

[9]

De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.

[10]
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano. Res., in press, DOI: 10.1007/s12274-023-5700-4.
[11]

Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S. Q.; Space, B.; Wojtas, L. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 2013, 495, 80–84.

[12]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[13]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[14]

Zhang, X.; Wang, Y.; Gu, M.; Wang, M. Y.; Zhang, Z. S.; Pan, W. Y.; Jiang, Z.; Zheng, H. Z.; Lucero, M.; Wang, H. L. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 2020, 5, 684–692.

[15]

Sekar, P.; Calvillo, L.; Tubaro, C.; Baron, M.; Pokle, A.; Carraro, F.; Martucci, A.; Agnoli, S. Cobalt spinel nanocubes on N-doped graphene: A synergistic hybrid electrocatalyst for the highly selective reduction of carbon dioxide to formic acid. ACS Catal. 2017, 7, 7695–7703.

[16]

Lu, L.; Sun, X. F.; Ma, J.; Zhu, Q. G.; Wu, C. Y.; Yang, D. X.; Han, B. X. Selective electroreduction of carbon dioxide to formic acid on electrodeposited SnO2@N-doped porous carbon catalysts. Sci. China Chem. 2018, 61, 228–235.

[17]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[18]

Tan, X.; Sun, K. A.; Zhuang, Z. W.; Hu, B. T.; Zhang, Y.; Liu, Q. G.; He, C.; Xu, Z. Y.; Chen, C.; Xiao, H. et al. Stabilizing copper by a reconstruction-resistant atomic Cu-O-Si interface for electrochemical CO2 reduction. J. Am. Chem. Soc. 2023, 145, 8656–8664.

[19]

Zhang, G.; Wang, T.; Zhang, M. M.; Li, L. L.; Cheng, D. F.; Zhen, S. Y.; Wang, Y. T.; Qin, J.; Zhao, Z. J.; Gong, J. L. Selective CO2 electroreduction to methanol via enhanced oxygen bonding. Nat. Commun. 2022, 13, 7768.

[20]

Kong, S. Y.; Lv, X. M.; Wang, X.; Liu, Z. Z.; Li, Z. C.; Jia, B. Q.; Sun, D.; Yang, C.; Liu, L. J.; Guan, A. X. et al. Delocalization state-induced selective bond breaking for efficient methanol electrosynthesis from CO2. Nat. Catal. 2023, 6, 6–15.

[21]

Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659.

[22]

Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

[23]

Costentin, C.; Drouet, S.; Robert, M.; Savéant, J. M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 2012, 338, 90–94.

[24]

Wang, Q. S.; Zheng, X. B.; Wu, J. B.; Wang, Y.; Wang, D. S.; Li, Y. D. Recent progress in thermal conversion of CO2 via single-atom site catalysis. Small Struct. 2022, 3, 2200059.

[25]

Fan, Q.; Hou, P. F.; Choi, C.; Wu, T. S.; Hong, S.; Li, F.; Soo, Y. L.; Kang, P.; Jung, Y.; Sun, Z. Y. Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 2020, 10, 1903068.

[26]
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res., in press, DOI: 10.1007/s12274-023-6037-8.
[27]

Li, M. H.; Wang, H. F.; Luo, W.; Sherrell, P. C.; Chen, J.; Yang, J. P. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 2020, 32, 2001848.

[28]

Yi, J. D.; Gao, X. P.; Zhou, H.; Chen, W.; Wu, Y. Design of Co-Cu diatomic site catalysts for high-efficiency synergistic CO2 electroreduction at industrial-level current density. Angew. Chem., Int. Ed. 2022, 61, e202212329.

[29]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[30]

Zhu, W. J.; Zhang, L.; Liu, S.; Li, A.; Yuan, X. T.; Hu, C. L.; Zhang, G.; Deng, W. Y.; Zang, K. T.; Luo, J. et al. Enhanced CO2 electroreduction on neighboring Zn/Co monomers by electronic effect. Angew. Chem., Int. Ed. 2020, 59, 12664–12668.

[31]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[32]

Wang, L. G.; Liu, H.; Zhuang, J. H.; Wang, D. S. Small-scale big science: From nano-to atomically dispersed catalytic materials. Small Sci. 2022, 2, 2200036.

[33]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[34]

Li, Y.; Adli, N. M.; Shan, W. T.; Wang, M. Y.; Zachman, M. J.; Hwang, S.; Tabassum, H.; Karakalos, S.; Feng, Z. X.; Wang, G. F. et al. Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy Environ. Sci. 2022, 15, 2108–2119.

[35]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. 2020, 132, 2727–2731.

[36]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[37]

Cheng, N. C.; Zhang, L.; Doyle-Davis, K.; Sun, X. L. Single-atom catalysts: From design to application. Electrochem. Energy Rev. 2019, 2, 539–573.

[38]

Xi, D. W.; Li, J. Y.; Low, J. X.; Mao, K. K.; Long, R.; Li, J. W.; Dai, Z. H.; Shao, T. Y.; Zhong, Y.; Li, Y. et al. Limiting the uncoordinated N species in M-N x single-atom catalysts toward electrocatalytic CO2 reduction in broad voltage range. Adv. Mater. 2022, 34, 2104090.

[39]

Pei, J. J.; Wang, T.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Qin, F. J.; Zhao, X.; Liu, Q. H.; Yan, W. S.; Dong, J. C. et al. N-bridged Co-N-Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 2021, 14, 3019–3028.

[40]

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

[41]

Wang, Y. X.; Su, H. Y.; He, Y. H.; Li, L. G.; Zhu, S. Q.; Shen, H.; Xie, P. F.; Fu, X. B.; Zhou, G. Y.; Feng, C. et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 2020, 120, 12217–12314.

[42]

Jia, C.; Tan, X.; Zhao, Y.; Ren, W. H.; Li, Y. B.; Su, Z.; Smith, S. C.; Zhao, C. Sulfur-dopant-promoted electroreduction of CO2 over coordinatively unsaturated Ni-N2 moieties. Angew. Chem., Int. Ed. 2021, 60, 23342–23348.

[43]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

[44]

Bokobza, L.; Bruneel, J. L.; Couzi, M. Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black. Chem. Phys. Lett. 2013, 590, 153–159.

[45]

Yang, F. Q.; Yu, H. M.; Su, Y.; Chen, J. W.; Chen, S. X.; Zeng, Z. L.; Deng, S. G.; Wang, J. Low-coordinated Ni-N1-C3 Sites atomically dispersed on hollow carbon nanotubes for efficient CO2 reduction. Nano Res. 2023, 16, 146–154.

[46]

Lu, Q.; Chen, C.; Di, Q.; Liu, W. L.; Sun, X. H.; Tuo, Y. X.; Zhou, Y.; Pan, Y.; Feng, X.; Li, L. N. et al. Dual role of pyridinic-N doping in carbon-coated Ni nanoparticles for highly efficient electrochemical CO2 reduction to CO over a wide potential range. ACS Catal. 2022, 12, 1364–1374.

[47]

He, C.; Zhang, Y.; Zhang, Y. F.; Zhao, L.; Yuan, L. P.; Zhang, J. N.; Ma, J. M.; Hu, J. S. Molecular evidence for metallic cobalt boosting CO2 electroreduction on pyridinic nitrogen. Angew. Chem., Int. Ed. 2020, 59, 4914–4919.

Nano Research
Pages 3895-3901
Cite this article:
Sui R, Wang B, Wang Y, et al. A general and facile calcination method to synthesize single-site catalysts for highly efficient electrochemical CO2 reduction. Nano Research, 2024, 17(5): 3895-3901. https://doi.org/10.1007/s12274-023-6378-3
Topics:
Metrics & Citations  
Article History
Copyright
Return