AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Screening of transition metal oxides for electrocatalytic nitrate reduction to ammonia at large currents

Qiongfei Wu1,§Weijie Zhu1,§Dongxu Ma1Chao Liang2Zhoucheng Wang1Hanfeng Liang1( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
College of Chemical Engineering, Tianjin University, Tianjin 300072, China

§ Qiongfei Wu and Weijie Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

Twelve transition metal oxides are screened for nitrate electroreduction to ammonia at large currents, and Co3O4 is identified as a promising catalyst with the highest Faradaic efficiency and moderate catalytic activity.

Abstract

Electrochemical nitrate reduction reaction (NO3RR) towards ammonia, as an emerging and appealing technology alternative to the energy-intensive Haber–Bosch process and inefficient nitrogen reduction reaction, has recently aroused wide concern and research. However, the current research of the NO3RR towards ammonia lacks the overall performance comparison of various electrocatalysts. Given this, we here make a comparison of 12 common transition metal oxide catalysts for the NO3RR under a high cathodic current density of 0.25 A·cm−2, wherein Co3O4 catalyst displays the highest ammonia Faradaic efficiency (85.15%) and moderate activity (ca. −0.25 V vs. reversible hydrogen electrode). Other external factors, such as nitrate concentrations in the electrolyte and applied potential ranges, have also been specifically investigated for the NO3RR.

Electronic Supplementary Material

Download File(s)
12274_2023_6379_MOESM1_ESM.pdf (2.8 MB)

References

[1]

Zheng, J. X.; Liu, X.; Zheng, Y. G.; Gandi, A. N.; Kuai, X. X.; Wang, Z. C.; Zhu, Y. P.; Zhuang, Z. C.; Liang, H. F. Ag x Zn y protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes. Nano Lett. 2023, 23, 6156–6163.

[2]

Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

[3]

Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

[4]

Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.

[5]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[6]

Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

[7]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[8]

Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted mxene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano 2023, 17, 1653–1662.

[9]

Zhang, X.; Li, X. Y.; Zhang, Y. Z.; Li, X.; Guan, Q. H.; Wang, J.; Zhuang, Z. C.; Zhuang, Q.; Cheng, X. M.; Liu, H. T. et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater. 2023, 33, 2302624.

[10]

Wang, R.; Wu, Q. F.; Wu, M. J.; Zheng, J. X.; Cui, J.; Kang, Q.; Qi, Z. B.; Ma, J. D.; Wang, Z. C.; Liang, H. F. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Res. 2022, 15, 7227–7233.

[11]

Li, Y.; Hua, Y. Q.; Sun, N.; Liu, S. J.; Li, H. X.; Wang, C.; Yang, X. Y.; Zhuang, Z. C.; Wang, L. L. Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 8712–8728.

[12]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[13]

Sun, C.; Wang, L. L.; Zhao, W. W.; Xie, L. B.; Wang, J.; Li, J. M.; Li, B. X.; Liu, S. J.; Zhuang, Z. C.; Zhao, Q. Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: Experiment, theory, and artificial intelligence modelling. Adv. Funct. Mater. 2022, 32, 2206163.

[14]

Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem. 2022, 134, e202203522.

[15]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[16]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[17]

Sharma, R.; Sharma, A.; Agarwal, S.; Dhaka, M. S. Stability and efficiency issues, solutions and advancements in perovskite solar cells: A review. Solar Energy 2022, 244, 516–535.

[18]

Qi, Z. B.; Zeng, Y.; Hou, Z.; Zhu, W. J.; Wei, B. B.; Yang, Y.; Lin, B. L.; Liang, H. F. Heterointerface engineering of Ni/Ni3N hierarchical nanoarrays for efficient alkaline hydrogen evolution. Nano Res. 2023, 16, 4803–4811.

[19]

Mei, G.; Liang, H. F.; Wei, B. B.; Shi, H. H.; Ming, F. W.; Xu, X.; Wang, Z. C. Bimetallic MnCo selenide yolk shell structures for efficient overall water splitting. Electrochim. Acta 2018, 290, 82–89.

[20]

Zhu, W. J.; Yao, F.; Cheng, K. J.; Zhao, M. T.; Yang, C. J.; Dong, C. L.; Hong, Q. M.; Jiang, Q.; Wang, Z. C.; Liang, H. F. Direct dioxygen radical coupling driven by octahedral ruthenium-oxygen-cobalt collaborative coordination for acidic oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 17995–18006.

[21]

Liang, H. F.; Cao, Z.; Xia, C.; Ming, F. W.; Zhang, W. L.; Emwas, A. H.; Cavallo, L.; Alshareef, H. N. Tungsten blue oxide as a reusable electrocatalyst for acidic water oxidation by plasma-induced vacancy engineering. CCS Chem. 2021, 3, 1553–1561.

[22]

Zhu, W. J.; Zhang, X. Y.; Yao, F.; Huang, R. P.; Chen, Y.; Chen, C. L.; Fei, J. W.; Chen, Y. Q.; Wang, Z. C.; Liang, H. F. A hydrazine-nitrate flow battery catalyzed by a bimetallic RuCo precatalyst for wastewater purification along with simultaneous generation of ammonia and electricity. Angew. Chem. 2023, 135, e202300390.

[23]

Zhu, W. J.; Yao, F.; Wu, Q. F.; Jiang, Q.; Wang, J. X.; Wang, Z. C.; Liang, H. F. Weakened d-p orbital hybridization in situ reconstructed Ru/β-Co(OH)2 heterointerfaces for accelerated ammonia electrosynthesis from nitrates. Energy Environ. Sci. 2023, 16, 2483–2493.

[24]

Smith, C.; Hill, A. K.; Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 2020, 13, 331–344.

[25]

MacFarlane, D. R.; Cherepanov, P. V.; Choi, J.; Suryanto, B. H. R.; Hodgetts, R. Y.; Bakker, J. M.; Ferrero Vallana, F. M.; Simonov, A. N. A roadmap to the ammonia economy. Joule 2020, 4, 1186–1205.

[26]

Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.

[27]

Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate-a step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.

[28]

Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

[29]

Singh, N.; Goldsmith, B. R. Role of electrocatalysis in the remediation of water pollutants. ACS Catal. 2020, 10, 3365–3371.

[30]

Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

[31]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[32]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[33]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[34]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[35]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[36]

Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Shao, C.; Guo, Y. Z. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2020, 31, 2008533.

[37]

Wang, Y. Y.; Wu, D. H.; Lv, P.; He, B. L.; Li, X.; Ma, D. W.; Jia, Y. Theoretical insights into the electroreduction of nitrate to ammonia on graphene-based single-atom catalysts. Nanoscale 2022, 14, 10862–10872.

[38]

Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

[39]

Zhang, S.; Li, M.; Li, J. C.; Song, Q. N.; Liu, X. High-ammonia selective metal-organic framework-derived co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction. Proc. Natl. Acad. Sci. USA 2022, 119, e2115504119.

[40]

Zhang, R.; Guo, Y.; Zhang, S. C.; Chen, D.; Zhao, Y. W.; Huang, Z. D.; Ma, L. T.; Li, P.; Yang, Q.; Liang, G. J. et al. Efficient ammonia electrosynthesis and energy conversion through a Zn-nitrate battery by iron doping engineered nickel phosphide catalyst. Adv. Energy Mater. 2022, 12, 2103872.

[41]

Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

[42]

Li, P. P.; Jin, Z. Y.; Fang, Z. W.; Yu, G. H. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2021, 14, 3522–3531.

[43]

Fan, X. Y.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2022, 15, 3050–3055

[44]

Fu, X. B.; Zhao, X. G.; Hu, X. B.; He, K.; Yu, Y. N.; Li, T.; Tu, Q.; Qian, X.; Yue, Q.; Wasielewski, M. R. et al. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Appl. Mater. Today 2020, 19, 100620.

[45]

Hu, Q.; Qin, Y. J.; Wang, X. D.; Wang, Z. Y.; Huang, X. W.; Zheng, H. J.; Gao, K. R.; Yang, H. P.; Zhang, P. X.; Shao, M. H. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989–4997.

[46]

Wang, J.; Cai, C.; Wang, Y. A.; Yang, X. M.; Wu, D. J.; Zhu, Y. M.; Li, M. H.; Gu, M.; Shao, M. H. Electrocatalytic reduction of nitrate to ammonia on low-cost ultrathin CoO x nanosheets. ACS Catal. 2021, 11, 15135–15140.

[47]

Deng, Z. Q.; Liang, J.; Liu, Q.; Ma, C. Q.; Xie, L. S.; Yue, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chem. Eng. J. 2022, 435, 135104.

[48]

Liu, S. S.; Qian, T.; Wang, M. F.; Ji, H. Q.; Shen, X. W.; Wang, C.; Yan, C. L. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 2021, 4, 322–331.

[49]

Liu, P. Y.; Shi, K.; Chen, W. Z.; Gao, R.; Liu, Z. L.; Hao, H. G.; Wang, Y. Q. Enhanced electrocatalytic nitrogen reduction reaction performance by interfacial engineering of MOF-based sulfides FeNi2S4/NiS hetero-interface. Appl. Catal. B Environ. 2021, 287, 119956.

[50]

Hao, Y. C.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448–456.

[51]

Liu, R. Q.; Guo, T.; Fei, H.; Wu, Z. Z.; Wang, D. Z.; Liu, F. Y. Highly efficient electrocatalytic N2 reduction to ammonia over metallic 1T phase of MoS2 enabled by active sites separation mechanism. Adv. Sci. 2022, 9, 2103583.

[52]

Wen, Y. K.; Zhu, H.; Hao, J. C.; Lu, S. L.; Zong, W.; Lai, F. L.; Ma, P. M.; Dong, W. F.; Liu, T. X.; Du, M. L. Metal-free boron and sulphur co-doped carbon nanofibers with optimized p-band centers for highly efficient nitrogen electroreduction to ammonia. Appl. Catal. B Environ. 2021, 292, 120144.

[53]

Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 µgNH3mgcat.1h1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

[54]

Wang, H. J.; Yu, H. J.; Wang, Z. Q.; Li, Y. H.; Xu, Y.; Li, X. N.; Xue, H. R.; Wang, L. Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia. Small 2019, 15, 1804769.

[55]

Zhang, J.; Ji, Y. J.; Wang, P. T.; Shao, Q.; Li, Y. Y.; Huang, X. Q. Adsorbing and activating N2 on heterogeneous Au-Fe3O4 nanoparticles for N2 fixation. Adv. Funct. Mater. 2020, 30, 1906579.

[56]

Jin, M.; Zhang, X.; Han, M. M.; Wang, H. J.; Wang, G. Z.; Zhang, H. M. Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets. J. Mater. Chem. A 2020, 8, 5936–5942.

[57]

Zhu, T. H.; Chen, Q. S.; Liao, P.; Duan, W. J.; Liang, S.; Yan, Z.; Feng, C. H. Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production. Small 2020, 16, 2004526.

[58]

Liu, H. Z.; Park, J.; Chen, Y. F.; Qiu, Y.; Cheng, Y.; Srivastava, K.; Gu, S.; Shanks, B. H.; Roling, L. T.; Li, W. Z. Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia. ACS Catal. 2021, 11, 8431–8442.

[59]

Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.

[60]

Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.

[61]

Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.

[62]

Xiao, L.; Dai, W. D.; Mou, S. Y.; Wang, X. Y.; Cheng, Q.; Dong, F. Coupling electrocatalytic cathodic nitrate reduction with anodic formaldehyde oxidation at ultra-low potential over Cu2O. Energy Environ. Sci. 2023, 16, 2696–2704.

[63]

Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.

[64]

Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.

[65]

Wang, Y. T.; Li, H. J.; Zhou, W.; Zhang, X.; Zhang, B.; Yu, Y. F. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angew. Chem., Int. Ed. 2022, 61, e202202604.

[66]

Gao, J. N.; Jiang, B.; Ni, C. C.; Qi, Y. F.; Zhang, Y. Q.; Oturan, N.; Oturan, M. A. Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: Preparation, performance and mechanism. Appl. Catal. B Environ. 2019, 254, 391–402.

Nano Research
Pages 3902-3910
Cite this article:
Wu Q, Zhu W, Ma D, et al. Screening of transition metal oxides for electrocatalytic nitrate reduction to ammonia at large currents. Nano Research, 2024, 17(5): 3902-3910. https://doi.org/10.1007/s12274-023-6379-2
Topics:

911

Views

18

Crossref

17

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 10 October 2023
Revised: 24 November 2023
Accepted: 28 November 2023
Published: 12 January 2024
© Tsinghua University Press 2023
Return