AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Conversion of magnetron-sputtered sacrificial intermediate layer into a stable FeCo-LDH catalyst for oxygen evolution reaction

Zhiquan Lang1Guang-Ling Song1,2,3,4( )Xingpeng Liao1Wenzhong Huang5Yixing Zhu6Haipeng Wang1Dajiang Zheng1
Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen 361005, China
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
The University of Queensland, St. Lucia, OLD 4072, Australia
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

The study introduced a scalable and controllable approach to convert a co-sputtered sacrificial film into a stable FeCo-layered double hydroxide (LDH) electrocatalyst for enhanced oxygen evolution reaction efficiency.

Abstract

Controllable and scalable preparation of electrocatalyst materials holds significant importance for their practical application. Magnetron sputtering is a highly effective synthesis method, known for its producing uniform films and allowing easy control of component compositions. In this paper, we propose an in-situ synthesis method for layered double hydroxide (LDH) electrocatalysts through sacrificing magnetron sputtered films. The resulting FeCo-LDH catalyst demonstrated a low overpotential of only 300 mV at 10 mA·cm−2. Furthermore, we conducted spectroscopic analysis to investigate the surface changes of the catalysts during the oxygen evolution reaction (OER) process. Our findings indicated that the formation of Co oxyhydroxides plays a beneficial role in enhancing the catalytical performance of the FeCo-LDH for OER reaction. This restructuring strategy of converting a magnetron-sputtered sacrificial film into a catalytical LDH introduces a new avenue to the synthesis of transition metal-based electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2023_6385_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Zhu, K. Y.; Chen, J. Y.; Wang, W. J.; Liao, J. W.; Dong, J. C.; Chee, M. O. L.; Wang, N.; Dong, P.; Ajayan, P. M.; Gao, S. P. et al. Etching-doping sedimentation equilibrium strategy: Accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting. Adv. Funct. Mater. 2020, 30, 2003556.

[2]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[3]

Zhong, D. Z.; Li, T.; Wang, D.; Li, L. N.; Wang, J. C.; Hao, G. Y.; Liu, G.; Zhao, Q.; Li, J. P. Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution. Nano Res. 2022, 15, 162–169.

[4]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[5]

Yan, D. F.; Mebrahtu, C.; Wang, S. Y.; Palkovits, R. Innovative electrochemical strategies for hydrogen production: From electricity input to electricity output. Angew. Chem., Int. Ed. 2023, 62, e202214333.

[6]

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

[7]

Gong, L. Q.; Yang, H.; Wang, H. M.; Qi, R. J.; Wang, J. L.; Chen, S. H.; You, B.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res. 2021, 14, 4528–4533.

[8]

Hua, B.; Li, M.; Sun, Y. F.; Zhang, Y. Q.; Yan, N.; Chen, J.; Thundat, T.; Li, J.; Luo, J. L. A coupling for success: Controlled growth of Co/CoO X nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts in alkaline condition. Nano Energy 2017, 32, 247–254.

[9]

Liu, S. Q.; Gao, M. R.; Liu, S. B.; Luo, J. L. Hierarchically assembling cobalt/nickel carbonate hydroxide on copper nitride nanowires for highly efficient water splitting. Appl. Catal. B: Environ. 2021, 292, 120148.

[10]

Huang, W. Z.; Li, J. T.; Liao, X. B.; Lu, R. H.; Ling, C. H.; Liu, X.; Meng, J. S.; Qu, L. B.; Lin, M. T.; Hong, X. F. et al. Ligand modulation of active sites to promote electrocatalytic oxygen evolution. Adv. Mater. 2022, 34, 2200270.

[11]

Zhu, J. X.; Li, S. K.; Zhuang, Z. C.; Gao, S.; Hong, X. F.; Pan, X. L.; Yu, R. H.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Ultrathin metal silicate hydroxide nanosheets with moderate metal-oxygen covalency enables efficient oxygen evolution. Energy Environ. Mater. 2022, 5, 231–237.

[12]

Yang, H.; Gong, L. Q.; Wang, H. M.; Dong, C.; Wang, J. L.; Qi, K.; Liu, H. F.; Guo, X. P.; Xia, B. Y. Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat. Commun. 2020, 11, 5075.

[13]

Tang, T.; Jiang, Z.; Deng, J.; Niu, S.; Yao, Z. C.; Jiang, W. J.; Zhang, L. J.; Hu, J. S. Constructing hierarchical nanosheet-on-microwire FeCo LDH@Co3O4 arrays for high-rate water oxidation. Nano Res. 2022, 15, 10021–10028.

[14]

Liu, X. P.; Gong, M. X.; Deng, S. F.; Zhao, T. H.; Shen, T.; Zhang, J.; Wang, D. L. Transforming damage into benefit: Corrosion engineering enabled electrocatalysts for water splitting. Adv. Funct. Mater. 2021, 31, 2009032.

[15]

Liu, X. P.; Gong, M. X.; Xiao, D. D.; Deng, S. F.; Liang, J. N.; Zhao, T. H.; Lu, Y.; Shen, T.; Zhang, J.; Wang, D. L. Turning waste into treasure: Regulating the oxygen corrosion on Fe foam for efficient electrocatalysis. Small 2020, 16, 2000663.

[16]

Dong, J. N.; Zhang, X. N.; Huang, J. Y.; Hu, J.; Chen, Z.; Lai, Y. K. In-situ formation of unsaturated defect sites on converted CoNi alloy/Co-Ni LDH to activate MoS2 nanosheets for pH-universal hydrogen evolution reaction. Chem. Eng. J. 2021, 412, 128556.

[17]

Zhang, M.; Zhang, J. T.; Ran, S. Y.; Qiu, L. X.; Sun, W.; Yu, Y.; Chen, J. S.; Zhu, Z. H. A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Res. 2021, 14, 1175–1186.

[18]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[19]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[20]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624

[21]

Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

[22]

Liu, S. Y.; Zhou, Y. H.; Zhang, Y. B.; Xia, S. J.; Li, Y.; Zhou, X.; Qiu, B.; Shao, G. J.; Liu, Z. P. Surface yttrium-doping induced by element segregation to suppress oxygen release in Li-rich layered oxide cathodes. Tungsten 2022, 4, 336–345.

[23]

Yu, T. T.; Li, S. B.; Zhang, L.; Li, F. B.; Wang, J. X.; Pan, H.; Zhang, D. Q. In situ growth of ZIF-67-derived nickel-cobalt-manganese hydroxides on 2D V2CT X MXene for dual-functional orientation as high-performance asymmetric supercapacitor and electrochemical hydroquinone sensor. J. Colloid Interface Sci. 2023, 629, 546–558

[24]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[25]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[26]

Lang, Z. Q.; Song, G. L.; Wu, P. P.; Zheng, D. J. A corrosion-reconstructed and stabilized economical Fe-based catalyst for oxygen evolution. Nano Res. 2023, 16, 2224–2229.

[27]

Chen, M. X.; Lu, S. L.; Fu, X. Z.; Luo, J. L. Core–shell structured NiFeSn@NiFe (oxy)hydroxide nanospheres from an electrochemical strategy for electrocatalytic oxygen evolution reaction. Adv. Sci. 2020, 7, 1903777.

[28]

Liang, J.; Liu, Q.; Li, T. S.; Luo, Y. L.; Lu, S. Y.; Shi, X. F.; Zhang, F.; Asiri, A. M.; Sun, X. P. Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chem. 2021, 23, 2834–2867.

[29]

Zhu, Y. X.; Song, G. L.; Zheng, D. J.; Serdechnova, M.; Blawert, C.; Zheludkevich, M. L. In situ synergistic strategy of sacrificial intermedium for scalable-manufactured and controllable layered double hydroxide film. Sci. China Mater. 2022, 65, 1842–1852

[30]

Gultom, N. S.; Chen, T. S.; Silitonga, M. Z.; Kuo, D. H. Overall water splitting realized by overall sputtering thin-film technology for a bifunctional MoNiFe electrode: A green technology for green hydrogen. Appl. Catal. B: Environ. 2023, 322, 122103.

[31]

Yuan, H.; Wang, G.; Zhao, Y. X.; Liu, Y.; Wu, Y.; Zhang, Y. G. A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 2020, 13, 1686–1692.

[32]

Pan, X. L.; Zhou, X. B.; Liao, X. B.; Yu, R. H.; Yu, K. S.; Lin, S.; Ding, Y.; Luo, W.; Yan, M. Y.; Mai, L. Ultrafast ion sputtering modulation of two-dimensional substrate for highly sensitive raman detection. ACS Mater. Lett. 2022, 4, 2622–2630.

[33]

Wan, W. J.; Wu, H. Y.; Wang, Z. W.; Cai, G. X.; Li, D. R.; Zhong, H. Z.; Jiang, T.; Jiang, C. Z.; Ren, F. Tailoring electronic structure of Ni-Fe oxide by V incorporation for effective electrocatalytic water oxidation. Appl. Surf. Sci 2023, 611, 155732.

[34]

Wang, S. A.; Xu, B. L.; Huo, W. Y.; Feng, H. C.; Zhou, X. F.; Fang, F.; Xie, Z. H.; Shang, J. K.; Jiang, J. Q. Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl. Catal. B: Environ. 2022, 313, 121472.

[35]

van der Vliet, D. F.; Wang, C.; Tripkovic, D.; Strmcnik, D.; Zhang, X. F.; Debe, M. K.; Atanasoski, R. T.; Markovic, N. M.; Stamenkovic, V. R. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nat. Mater. 2012, 11, 1051–1058.

[36]

Inamdar, A. I.; Chavan, H. S.; Pawar, S. M.; Kim, H.; Im, H. NiFeCo oxide as an efficient and sustainable catalyst for the oxygen evolution reaction. Int. J. Energy Res. 2020, 44, 1789–1797.

[37]

Solomon, G.; Kohan, M. G.; Vagin, M.; Rigoni, F.; Mazzaro, R.; Natile, M. M.; You, S. J.; Morandi, V.; Concina, I.; Vomiero, A. Decorating vertically aligned MoS2 nanoflakes with silver nanoparticles for inducing a bifunctional electrocatalyst towards oxygen evolution and oxygen reduction reaction. Nano Energy 2021, 81, 105664.

[38]

Kariuki, N. N.; Cansizoglu, M. F.; Begum, M.; Yurukcu, M.; Yurtsever, F. M.; Karabacak, T.; Myers, D. J. SAD-GLAD Pt-Ni@Ni nanorods as highly active oxygen reduction reaction electrocatalysts. ACS Catal. 2016, 6, 3478–3485.

[39]

Wen, Q. L.; Wang, S. Z.; Wang, R. W.; Huang, D. J.; Fang, J. K.; Liu, Y. W.; Zhai, T. Y. Nanopore-rich NiFe LDH targets the formation of the high-valent nickel for enhanced oxygen evolution reaction. Nano Res. 2023, 16, 2286–2293.

[40]

Mehdi, M.; An, B. S.; Kim, H.; Lee, S.; Lee, C.; Seo, M.; Noh, M. W.; Cho, W. C.; Kim, C. H.; Choi, C. H. et al. Rational design of a stable Fe-rich Ni-Fe layered double hydroxide for the industrially relevant dynamic operation of alkaline water electrolyzers. Adv. Energy Mater. 2023, 13, 2204403.

[41]

Li, D.; Zhou, X. M.; Liu, L. L.; Ruan, Q. D.; Zhang, X. L.; Wang, B.; Xiong, F. Y.; Huang, C.; Chu, P. K. Reduced anodic energy depletion in electrolysis by urea and water co-oxidization on NiFe-LDH: Activity origin and plasma functionalized strategy. Appl. Catal. B: Environ. 2023, 324, 122240.

[42]

Zhou, D. J.; Li, P. S.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W. F.; Sun, X. M.; Duan, X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790–8817.

[43]

Li, J.; Wang, C.; Shang, H. Y.; Wang, Y.; You, H. M.; Xu, H.; Du, Y. K. Metal-modified PtTe2 nanorods: Surface reconstruction for efficient methanol oxidation electrocatalysis. Chem. Eng. J. 2021, 424, 130319.

[44]

Gao, B.; Du, X. Y.; Ma, Y. M.; Li, Y. X.; Li, Y. H.; Ding, S. J.; Song, Z. X.; Xiao, C. H. 3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction. Appl. Catal. B: Environ. 2020, 263, 117750.

[45]

Ma, M.; Hansen, H. A.; Valenti, M.; Wang, Z. G.; Cao, A. P.; Dong, M. D.; Smith, W. A. Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films. Nano Energy 2017, 42, 51–57.

[46]

Liu, S. J.; Zhu, J.; Sun, M.; Ma, Z. X.; Hu, K.; Nakajima, T.; Liu, X. H.; Schmuki, P.; Wang, L. Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets. J. Mater. Chem. A 2020, 8, 2490–2497.

[47]

Liu, D.; Ai, H. Q.; Li, J. L.; Fang, M. L.; Chen, M. P.; Liu, D. Y.; Du, X. Y.; Zhou, P. F.; Li, F. F.; Lo, K. H. et al. Surface reconstruction and phase transition on vanadium-cobalt-iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation. Adv. Energy Mater. 2020, 10, 2002464.

[48]

Wang, Y.; Zhu, Y. L.; Zhao, S. L.; She, S. X.; Zhang, F. F.; Chen, Y.; Williams, T.; Gengenbach, T.; Zu, L. H.; Mao, H. Y. et al. Anion etching for accessing rapid and deep self-reconstruction of precatalysts for water oxidation. Matter 2020, 3, 2124–2137.

[49]

Qian, J.; Ma, R.; Chen, Z. J.; Wang, G.; Zhang, Y. C.; Du, Y. F.; Chen, Y. J.; An, T. C.; Ni, B. J. Hierarchical Co-Fe layered double hydroxides (LDH)/Ni foam composite as a recyclable peroxymonosulfate activator towards monomethylhydrazine degradation: Enhanced electron transfer and 1O2 dominated non-radical pathway. Chem. Eng. J. 2023, 469, 143554.

[50]

Kou, Z. K.; Yu, Y.; Liu, X. M.; Gao, X. R.; Zheng, L. R.; Zou, H. Y.; Pang, Y. J.; Wang, Z. Y.; Pan, Z. H.; He, J. Q. et al. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co-Mo2C precatalyst enable water oxidation. ACS Catal. 2020, 10, 4411–4419.

Nano Research
Pages 4307-4313
Cite this article:
Lang Z, Song G-L, Liao X, et al. Conversion of magnetron-sputtered sacrificial intermediate layer into a stable FeCo-LDH catalyst for oxygen evolution reaction. Nano Research, 2024, 17(5): 4307-4313. https://doi.org/10.1007/s12274-023-6385-4
Topics:

619

Views

3

Crossref

2

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 09 September 2023
Revised: 24 November 2023
Accepted: 30 November 2023
Published: 13 January 2024
© Tsinghua University Press 2023
Return