AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible mille-feuille structure electromagnetic interference shielding film with excellent thermal conductivity and Joule heating

Dingwen Yin1,2Huijuan Xiu1,2( )Simin Wang1,2Yanfei Pan3( )Na Li1,2Rui Cheng1,2Shaoyan Huang1,2Sha Fan1,2Jinbao Li1,2( )
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an 710021, China
College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
Show Author Information

Graphical Abstract

Flexible mille-feuille structure composite films were fabricated via the layer-by-layer self-assembly and hot-pressing strategy of the TEMPO-oxidized cellulose nanofibrils/silver nanoparticles (TOCNFs/AgNPs) and graphene nanoplates (GNPs). The composite film possessed superb electromagnetic interference (EMI) shielding (98.05 dB), excellent thermal conductivity (18.82 W/(m·K)) and outstanding Joule heating.

Abstract

The intelligent electronic devices have urgent demands for electromagnetic interference (EMI) shielding films with excellent heat dissipation capability. However, it is challenging to obtain excellent EMI shielding and thermal conductivity performances simultaneously. Herein, inspired by mille-feuille structure, the multifunctional EMI shielding films developed by a layer-by-layer self-assembly and hot-pressing strategy. The ingenious introduction of silver nanoparticles (AgNPs) with large specific surface area and highly conductive into the network formed by TEMPO-oxidized cellulose nanofibrils (TOCNFs) with large aspect ratio to form the TOCNFs/AgNPs. And the graphene nanoplates (GNPs) with high conductivity loss distributed alternately with TOCNFs/AgNPs to construct mille-feuille structure, which had highly efficient conductive network, complete thermally conduction pathway and rich heterogeneous interfaces. Consequently, the designed films presented high electrical conductivity of 8520 S/cm, superb EMI effectiveness (SE) of 98.05 dB, and excellent thermal conductivity of 18.82 W/(m·K). Furthermore, the films possessed outstanding Joule heating performances with low voltages, including high heating temperature (100 °C), fast response time (< 20 s), and impressive heating stability and reliability. Thus, such high-performance EMI shielding films with fascinating thermal conductivity and Joule heating performances have substantial application in flexible electronics, electromagnetic waves shielding and thermal management.

Electronic Supplementary Material

Download File(s)
12274_2023_6387_MOESM1_ESM.pdf (3.6 MB)

References

[1]

Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

[2]

Huang, W. H.; Qiu, Q.; Yang, X. F.; Zuo, S. W.; Bai, J. N.; Zhang, H. B.; Pei, K.; Che, R. C. Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption. Nano-Micro Lett. 2022, 14, 96.

[3]

Yang, X. F.; Gao, W. M.; Chen, J. M.; Lu, X.; Yang, D.; Kang, Y. F.; Liu, Q.; Qing, Y. C.; Huang, W. H. Co-Ni electromagnetic coupling in hollow Mo2C/NC sphere for enhancing electromagnetic wave absorbing performance. Chin. J. Chem. 2023, 41, 64–74.

[4]

Huang, W. H.; Chen, J. M.; Gao, W. M.; Wang, L.; Liu, P. B.; Zhang, Y. N.; Yin, Z.; Yang, Y. H. “Host-Guest” crystalline Mo/Co-framework induced phase-conversion of MoC x in carbon hybrids for regulating absorption of electromagnetic wave. Carbon 2022, 197, 129–140

[5]

Li, J. Z.; Xu, Z. K.; Li, T.; Zhi, D. D.; Chen, Y.; Lu, Q. H.; Wang, J. J.; Liu, Q.; Meng, F. B. Multifunctional antimony tin oxide/reduced graphene oxide aerogels with wideband microwave absorption and low infrared emissivity. Compos. Part B Eng. 2022, 231, 109565.

[6]

Li, T.; Zhi, D. D.; Guo, Z. H.; Li, J. Z.; Chen, Y.; Meng, F. B. 3D porous biomass-derived carbon materials: Biomass sources, controllable transformation and microwave absorption application. Green Chem. 2022, 24, 647–674

[7]

Liu, C. X.; Ma, Y. N.; Xie, Y. M.; Zou, J. J.; Wu, H.; Peng, S. H.; Qian, W.; He, D. P.; Zhang, X.; Li, B. W. et al. Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration. ACS Appl. Mater. Interfaces 2023, 15, 4516–4526.

[8]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem., Int. Ed. 2023, 135, e202216093.

[9]

Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402.

[10]

Wang, X. Y.; Liao, S. Y.; Wan, Y. J.; Zhu, P. L.; Hu, Y. G.; Zhao, T.; Sun, R.; Wong, C. P. Electromagnetic interference shielding materials: Recent progress, structure design, and future perspective. J. Mater. Chem. C 2022, 10, 44–72.

[11]

Ma, Z. N.; Li, J. W.; Zhang, L. J.; He, A. N.; Dong, Y. Q.; Tan, G. G.; Ning, M. Q.; Man, Q. K.; Liu, X. C. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding. J. Mater. Sci. Technol. 2021, 81, 43–50.

[12]

Liu, H. B.; Huang, Z. Y.; Chen, T.; Su, X. Q.; Liu, Y. N.; Fu, R. L. Construction of 3D MXene/silver nanowires aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity. Chem. Eng. J. 2022, 427, 131540.

[13]

Wang, Q. W.; Zhu, S. M.; He, H. Y.; Du, J. B.; Li, W.; Kang, Z. X.; Chen, D. X. Conductive and superhydrophobic Ag/PDMS films with high stability for passive de-icing and electromagnetic shielding. Prog. Org. Coat. 2022, 169, 106919.

[14]

Hu, P. Y.; Lyu, J.; Fu, C.; Gong, W. B.; Liao, J. H.; Lu, W. B.; Chen, Y. P.; Zhang, X. T. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 2020, 14, 688–697.

[15]

Wang, G.; Liao, X.; Zou, F. F.; Song, P. W.; Tang, W. Y.; Yang, J. M.; Li, G. X. Flexible TPU/MWCNTs/BN composites for frequency-selective electromagnetic shielding and enhanced thermal conductivity. Compos. Commun. 2021, 28, 100953.

[16]

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

[17]

Jin, C.; Bai, Z. Q. MXene-based textile sensors for wearable applications. ACS Sens. 2022, 7, 929–950.

[18]

Zhou, M.; Wang, J. W.; Wang, G. H.; Zhao, Y.; Tang, J. M.; Pan, J. X.; Ji, G. B. Lotus leaf-inspired and multifunctional Janus carbon felt@Ag composites enabled by in situ asymmetric modification for electromagnetic protection and low-voltage joule heating. Compos. Part B Eng. 2022, 242, 110110.

[19]

He, J. Q.; Li, A.; Wang, W. J.; Cui, C.; Jiang, S.; Chen, M. M.; Qin, W. F.; Tang, H.; Guo, R. H. Multifunctional wearable device based on an antibacterial and hydrophobic silver nanoparticles/Ti3C2T x MXene/thermoplastic polyurethane fibrous membrane for electromagnetic shielding and strain sensing. Ind. Eng. Chem. Res. 2023, 62, 9221–9232.

[20]

Luo, S. L.; Xiang, T. T.; Dong, J. W.; Su, F. M.; Ji, Y. X.; Liu, C. T.; Feng, Y. Z. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. J. Mater. Sci. Technol. 2022, 129, 127–134.

[21]

Li, M. M.; Zhao, Y. J.; Zhang, M. L.; Jiang, S.; Farooq, A.; Liu, L. Y.; Ge, A. X.; Liu, L. F. Recent progress in the application of cellulose in electromagnetic interference shielding materials. Macromol. Mater. Eng. 2022, 307, 2100899.

[22]

Yang, J. L.; Wang, B. C.; Liao, H. X.; Xiang, J. Y.; Mu, C. P.; Nie, A. M.; Zhai, K.; Xue, T. Y.; Wen, F. S. Flexible Ag-coated carbon nanofibers/bacterial cellulose films for electromagnetic interface shielding and multifunctional thermal applications. ACS Appl. Nano Mater. 2023, 6, 1203–1211.

[23]

Yang, Y.; Luo, C. L.; Chen, X. D.; Wang, M. Sustainable electromagnetic shielding graphene/nanocellulose thin films with excellent joule heating and mechanical properties via in-situ mechanical exfoliation and crosslinking with cations. Compos. Sci. Technol. 2023, 233, 109913.

[24]

Li, L.; Yuan, X.; Zhai, H. X.; Zhang, Y.; Ma, L. L.; Wei, Q. Y.; Xu, Y.; Wang, G. Z. Flexible and ultrathin graphene/aramid nanofiber carbonizing films with nacre-like structures for heat-conducting electromagnetic wave shielding/absorption. ACS Appl. Mater. Interfaces 2023, 15, 15872–15883.

[25]

Huang, W. H.; Gao, W. M.; Zuo, S. W.; Zhang, L. X.; Pei, K.; Liu, P. B.; Che, R. C.; Zhang, H. B. Hollow MoC/NC sphere for electromagnetic wave attenuation: Direct observation of interfacial polarization on nanoscale hetero-interfaces. J. Mater. Chem. A 2022, 10, 1290–1298.

[26]

Tan, H. X.; Gou, J. R.; Zhang, X.; Ding, L.; Wang, H. H. Sandwich-structured Ti3C2T x -MXene/reduced-graphene-oxide composite membranes for high-performance electromagnetic interference and infrared shielding. J. Membrane Sci. 2023, 675, 121560.

[27]

Hu, B. Y.; Guo, H.; Li, J. Y.; Li, T.; Cao, M.; Qi, W. Y.; Wu, Z. Q.; Li, Y.; Li, B. A. Dual-encapsulated phase change composites with hierarchical MXene-graphene monoliths in graphene foam for high-efficiency thermal management and electromagnetic interference shielding. Compos. Part B Eng. 2023, 266, 110998.

[28]

Guo, D.; Huo, Y. J.; Mu, C. P.; Wang, B. C.; Xiang, J. Y.; Nie, A. M.; Zhai, K.; Xue, T. Y.; Wen, F. S.; Liu, Z. Y. Flexible aramid nanofiber/Ag nanowires/graphene nanosheets composite films with sandwich structure for high-performance electromagnetic interference shielding and Joule heating. J. Alloys Compd. 2022, 923, 166401.

[29]

An, D.; Chen, Y. C.; He, R. Z.; Yu, H. T.; Sun, Z. J.; Liu, Y. F.; Liu, Y. Q.; Lian, Q. S.; Feng, W.; Wong, C. P. The polymer-based thermal interface materials with improved thermal conductivity, compression resilience, and electromagnetic interference shielding performance by introducing uniformly melamine foam. Adv. Compos. Hybrid Mater. 2023, 6, 136.

[30]

Li, X.; Xu, T. L.; Cao, W. J.; Wang, M. H.; Chen, F. Q.; Jin, L. Y.; Song, N.; Sun, S.; Ding, P. Graphene/carbon fiber network constructed by co-carbonization strategy for functional integrated polyimide composites with enhanced electromagnetic shielding and thermal conductive properties. Chem. Eng. J. 2023, 464, 142595.

[31]

Gao, Y. Y.; Bao, D.; Zhang, M. H.; Cui, Y. X.; Xu, F.; Shen, X. S.; Zhu, Y. J.; Wang, H. Y. Millefeuille-inspired thermal interface materials based on double self-assembly technique for efficient microelectronic cooling and electromagnetic interference shielding. Small 2022, 18, 2105567.

[32]

Yin, D. W.; Pan, Y. F.; Guo, Q.; Wang, Y.; Huang, J. T. Preparation and properties of flexible nanocellulose fibers/Ag nanoparticles composite films with excellent electromagnetic shielding performance. Appl. Phys. A 2022, 128, 43.

[33]

Li, X.; Qu, Y. F.; Wang, X.; Bian, H. Y.; Wu, W. B.; Dai, H. Q. Flexible graphene/silver nanoparticles/aluminum film paper for high-performance electromagnetic interference shielding. Mater. Design. 2022, 213, 110296.

[34]

Li, Y. K.; Li, W. J.; Wang, Z. X.; Du, P. Y.; Xu, L.; Jia, L. C.; Yan, D. X. High-efficiency electromagnetic interference shielding and thermal management of high-graphene nanoplate-loaded composites enabled by polymer-infiltrated technique. Carbon 2023, 211, 118096.

[35]

Lim, G. H.; Kwon, N.; Han, E. J.; Bok, S.; Lee, S. E.; Lim, B. Flexible nanoporous silver membranes with unprecedented high effectiveness for electromagnetic interference shielding. J. Ind. Eng. Chem. 2021, 93, 245–252.

[36]

Chen, Y. M.; Pang, L.; Li, Y.; Luo, H.; Duan, G. G.; Mei, C. T.; Xu, W. H.; Zhou, W.; Liu, K. M.; Jiang, S. H. Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Compos. Part A: Appl. Sci. Manuf. 2020, 35, 105960.

[37]

Chen, Y. M.; Luo, H.; Guo, H. T.; Liu, K. M.; Mei, C. T.; Li, Y.; Duan, G. G.; He, S. J.; Han, J. Q.; Zheng, J. J. et al. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydr. Polym. 2022, 276, 118799.

[38]

Yin, R.; Yang, S. Y.; Li, Q. M.; Zhang, S. D.; Liu, H.; Han, J.; Liu, C. T.; Shen, C. Y. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 2020, 65, 899–908.

[39]

Cheng, R.; Wang, B.; Zeng, J. S.; Li, J. P.; Xu, J.; Gao, W. H.; Chen, K. F. Janus-inspired flexible cellulose nanofiber-assisted MXene/silver nanowire papers with fascinating mechanical properties for efficient electromagnetic interference shielding. Carbon 2023, 202, 314–324.

[40]

Cheng, R.; Zeng, J. S.; Wang, B.; Li, J. P.; Cheng, Z.; Xu, J.; Gao, W. H.; Chen, K. F. Ultralight, flexible and conductive silver nanowire/nanofibrillated cellulose aerogel for multifunctional strain sensor. Chem. Eng. J. 2021, 424, 130565.

[41]

Hu, G. R.; Dong, F. P.; Xu, J.; Xiong, Y. Z. High thermally conductive, hydrophobic and small-thickness nanocomposite films with symmetrical double conductive networks exhibit ultra-high electromagnetic shielding performance. Compos. Part A Appl. Sci. Manuf. 2023, 167, 107416.

[42]

Sun, X.; Chen, S. Z.; Kuang, C. Y.; Fu, W. J.; Li, X. S.; Duan, Z. Y.; Wen, Q. Y. Gradient-reduced graphene oxide aerogel with ultrabroadband absorption from microwave to terahertz bands. ACS Appl. Nano Mater. 2023, 6, 3893–3902.

[43]

Zhao, X. H.; Meng, F. W.; Peng, Y. T. Flexible and highly pressure-sensitive ternary composites-wrapped polydimethylsiloxane sponge based on synergy of multi-dimensional components. Compos. Part B Eng. 2022, 229, 109466.

[44]

Xiong, C. Y.; Wang, T. X.; Zhang, Y. K.; Duan, C.; Zhang, Z.; Zhou, Q. S.; Xiong, Q.; Zhao, M. J.; Wang, B.; Ni, Y. H. Multifunctional conductive material based on intelligent porous paper used in conjunction with a vitrimer for electromagnetic shielding, sensing, joule heating, and antibacterial properties. ACS Appl. Mater. Interfaces 2023, 15, 33763–33773.

[45]

Zhao, S. M.; Yan, Y. H.; Gao, A. L.; Zhao, S.; Cui, J.; Zhang, G. F. Flexible polydimethylsilane nanocomposites enhanced with a three-dimensional graphene/carbon nanotube bicontinuous framework for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 26723–26732.

[46]

Zhou, E. Z.; Xi, J. B.; Guo, Y.; Liu, Y. J.; Xu, Z.; Peng, L.; Gao, W. W.; Ying, J.; Chen, Z. C.; Gao, C. Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 2018, 133, 316–322.

[47]

Zhang, Y.; Gao, Q.; Sheng, X. Z.; Zhang, S.; Chen, J. J.; Ma, Y.; Qin, J. B.; Zhao, Y. S.; Shi, X. T.; Zhang, G. C. Flexible, robust, sandwich structure polyimide composite film with alternative MXene and Ag NWs layers for electromagnetic interference shielding. J. Mater. Sci. Technol. 2023, 159, 194–203.

[48]

Zou, H. J.; Li, X. P.; Zhang, Y. Q.; Wang, Z. N.; Zhuo, B.; Ti, P.; Yuan, Q. P. Effects of different hot-pressing processes and NFC/GO/CNT composite proportions on the performance of conductive membranes. Mater. Des. 2021, 198, 109334.

[49]

Li, Y. H.; Chen, Y. A.; Liu, Y.; Zhang, C. Z.; Qi, H. S. Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance. Carbohydr. Polym. 2021, 274, 118652.

[50]

Lee, J. H.; Kim, Y. S.; Ru, H. J.; Lee, S. Y.; Park, S. J. Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for absorption-dominated electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 188.

[51]

Yang, W.; Bai, H. X.; Jiang, B.; Wang, C. N.; Ye, W. M.; Li, Z. X.; Xu, C.; Wang, X. B.; Li, Y. F. Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res. 2022, 15, 9926–9935.

[52]

Shang, Y.; Ji, Y. X.; Dong, J. W.; Yang, G.; Zhang, X. D.; Su, F. M.; Feng, Y. Z.; Liu, C. T. Sandwiched cellulose nanofiber/boron nitride nanosheet/Ti3C2T x MXene composite film with high electromagnetic shielding and thermal conductivity yet insulation performance. Compos. Sci. Technol. 2021, 214, 108974.

[53]

Liu, K.; Liu, W.; Li, W.; Duan, Y. X.; Zhou, K. Y.; Zhang, S.; Ni, S. Z.; Xu, T.; Du, H. S.; Si, C. L. Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2022, 5, 1078–1089.

[54]

Cao, M. S.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Wen, B.; Yuan, J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018, 14, 1800987.

[55]

Huang, W. H.; Wang, S.; Yang, X. F.; Zhang, X. X.; Zhang, Y. N.; Pei, K.; Che, R. C. Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core–shell nanofiber network for enhanced electromagnetic wave adsorption. Carbon 2022, 195, 44–56.

[56]

Liu, J.; Yu, M. Y.; Yu, Z. Z.; Nicolosi, V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 2023, 66, 245–272.

[57]

Sun, M. X.; Cao, W. Q.; Zhu, P. Y.; Xiong, Z. M.; Chen, C. C.; Shu, J. C.; Huang, W. H.; Wu, F. Thermally tailoring magnetic molecular sponges through self-propagating combustion to tune magnetic-dielectric synergy toward high-efficiency microwave absorption and attenuation. Adv. Compos. Hybrid Mater. 2023, 6, 54.

[58]

Wang, L.; Ma, Z. L.; Qiu, H.; Zhang, Y. L.; Yu, Z.; Gu, J. W. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 2022, 14, 224.

[59]

Zhang, Y.; Xu, M. K.; Wang, Z. G.; Zhao, T. Y.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 2022, 15, 4916–4924

[60]

Huang, W. H.; Zhang, X. X.; Chen, J. M.; Qiu, Q.; Kang, Y. F.; Pei, K.; Zuo, S. W.; Zhang, J. C.; Che, R. C. High-density nanopore confined vortical dipoles and magnetic domains on hierarchical macro/meso/micro/nano porous ultra-light graphited carbon for adsorbing electromagnetic. Adv. Sci. 2023, 10, 2303217.

[61]

Wang, B. B.; Li, Y. C.; Zhang, W. Y.; Sun, J. M.; Zhao, J. Q.; Xu, Y. Z.; Liu, Y.; Guo, H. W.; Zhang, D. H. Ultrathin cellulose nanofiber/carbon nanotube/Ti3C2T x film for electromagnetic interference shielding and energy storage. Carbohydr. Polym. 2022, 286, 119302.

[62]

Jin, M.; Chen, W.; Liu, L. X.; Zhang, H. B.; Ye, L. X.; Min, P.; Yu, Z. Z. Transparent, conductive and flexible MXene grid/silver nanowire hierarchical films for high-performance electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 14364–14373

[63]

Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Flexible, transparent, and conductive Ti3C2T x MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. AC Nano. 2020, 14, 16643–16653.

[64]

Yang, B.; Wang, H. R.; Zhang, M. Y.; Jia, F. F.; Liu, Y. Q.; Lu, Z. Q. Mechanically strong, flexible, and flame-retardant Ti3C2T x MXene-coated aramid paper with superior electromagnetic interference shielding and electrical heating performance. Chem. Eng. J. 2023, 476, 146834.

[65]

Xu, J. D.; Li, R. S.; Ji, S. R.; Zhao, B. C.; Cui, T. R.; Tan, X. C.; Gou, G. Y.; Jian, J. M.; Xu, H. K.; Qiao, Y. C. et al. Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 2021, 15, 8907–8918.

[66]

Gao, Q. S.; Pan, Y. M.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 2021, 4, 274–285.

[67]

Wei, Q. Y.; Li, L.; Deng, Z.; Wan, G. P.; Zhang, Y.; Du, C. L.; Su, Y. R.; Wang, G. Z. Scalable fabrication of nacre-structured graphene/polytetrafluoroethylene films for outstanding EMI shielding under extreme environment. Small 2023, 19, 2302082

[68]

Liu, P. F.; An, F.; Lu, X. Y.; Li, X. F.; Min, P.; Shu, C.; Li, W.; Yu, Z. Z. Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels. Compos. Sci. Technol. 2021, 201, 108492.

[69]

Zhang, Y.; Yang, S. D.; Zhang, Q.; Ma, Z. Y.; Guo, Y. J.; Shi, M.; Wu, H.; Guo, S. Y. Constructing interconnected asymmetric conductive network in TPU fibrous film: Achieving low-reflection electromagnetic interference shielding and superior thermal conductivity. Carbon 2023, 206, 37–44.

[70]

Liu, Y.; Zhao, N.; Xu, J. Mechanically strong and flame-retardant PBO/BN/MXene nanocomposite paper with low thermal expansion coefficient, for efficient EMI shielding and heat dissipation. Adv. Fiber Mater. 2023, 5, 1657–1670.

[71]

Zhu, M.; Yan, X. X.; Li, X.; Dai, L.; Guo, J. H.; Lei, Y. T.; Xu, Y. J.; Xu, H. L. Flexible, transparent, and hazy composite cellulosic film with interconnected silver nanowire networks for EMI shielding and joule heating. ACS Appl. Mater. Interfaces 2022, 14, 45697–45706.

[72]

Zhang, T. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2T x -(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

Nano Research
Pages 4544-4554
Cite this article:
Yin D, Xiu H, Wang S, et al. Flexible mille-feuille structure electromagnetic interference shielding film with excellent thermal conductivity and Joule heating. Nano Research, 2024, 17(5): 4544-4554. https://doi.org/10.1007/s12274-023-6387-2
Topics:

766

Views

4

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 09 October 2023
Revised: 21 November 2023
Accepted: 01 December 2023
Published: 12 January 2024
© Tsinghua University Press 2023
Return