Although great progress has been made in improving hydrogen production, highly efficient catalysts, which are able to produce hydrogen in a fast and steady way at ambient temperature and pressure, are still in large demand. Here, we report a [NiCo]-based hydrogenase mimic, NiCo2O4 nanozyme, that can catalyze robust hydrogen evolution spontaneously in water without external energy input at room temperature. This hydrogenase nanozyme facilitates water splitting reaction by forming a three-center Ni–OH–Co bond analogous to the [NiFe]-hydrogenase reaction by using aluminum as electron donor, and realizes hydrogen evolution with a high production rate of 915 L·h−1 per gram of nanozymes, which is hundreds of times higher than most of the natural hydrogenase or hydrogenase mimics. Furthermore, the NiCo2O4 nanozyme can robustly disrupt the adhesive oxidized layer of aluminum and enable the full consumption of electrons from aluminum. In contrast to the often-expensive synthetic catalysts that rely on rare elements and consume high energy, we envision that this NiCo2O4 nanozyme can potentially provide an upgrade for current hydrogen evolution, accelerate the development of scale-up hydrogen production, and generate a clean energy future.
Yang, C. F.; Zhong, W. D.; Shen, K.; Zhang, Q.; Zhao, R.; Xiang, H.; Wu, J.; Li, X. K.; Yang, N. J. Electrochemically reconstructed Cu-FeOOH/Fe3O4 catalyst for efficient hydrogen evolution in alkaline media. Adv. Energy Mater. 2022, 12, 2200077.
Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.
Sokol, K. P.; Robinson, W. E.; Warnan, J.; Kornienko, N.; Nowaczyk, M. M.; Ruff, A.; Zhang, J. Z.; Reisner, E. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy 2018, 3, 944–951.
Xia, L.; Tong, X.; Li, X.; Imran Channa, A.; You, Y. M.; Long, Z. H.; Vomiero, A.; Wang, Z. M. Synergistic tailoring of band structure and charge carrier extraction in “green” core/shell quantum dots for highly efficient solar energy conversion. Chem. Eng. J. 2022, 442, 136214.
Liu, W. Q.; Peng, H. P.; Li, L. G.; Wang, M. M.; Geng, H. B.; Huang, X. Q. Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution. Nano Res. 2023, 16, 4488–4493.
Bolt, A.; Dincer, I.; Agelin-Chaab, M. A review of unique aluminum-water based hydrogen production options. Energy & Fuels 2021, 35, 1024–1040.
Trowell, K.; Blanchet, J.; Goroshin, S.; Frost, D.; Bergthorson, J. Hydrogen production via reaction of metals with supercritical water. Sustain. Energy Fuels 2022, 6, 3394–3401.
Xu, S.; Zhao, X.; Liu, J. Liquid metal activated aluminum-water reaction for direct hydrogen generation at room temperature. Renew. Sust. Energy Rev. 2018, 92, 17–37.
Smith, I. E. Hydrogen generation by means of the aluminum/water reaction. J. Hydronaut. 1972, 6, 106–109.
Deng, Z. Y.; Ferreira, J. M. F.; Tanaka, Y.; Ye, J. H. Physicochemical mechanism for the continuous reaction of γ-Al2O3-modified aluminum powder with water. J. Am. Ceram. Soc. 2007, 90, 1521–1526.
Deng, Z. Y.; Ferreira, J. M. F.; Sakka, Y. Hydrogen-generation materials for portable applications. J. Am. Ceram. Soc. 2008, 91, 3825–3834.
Hambourger, M.; Gervaldo, M.; Svedruzic, D.; King, P. W.; Gust, D.; Ghirardi, M.; Moore, A. L.; Moore, T. A. [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell. J. Am Chem. Soc. 2008, 130, 2015–2022.
Kanygin, A.; Milrad, Y.; Thummala, C.; Reifschneider, K.; Baker, P.; Marco, P.; Yacoby, I.; Redding, K. E. Rewiring photosynthesis: A photosystem I-hydrogenase chimera that makes H2 in vivo. Energy Environ. Sci. 2020, 13, 2903–2914.
Shima, S.; Pilak, O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Ermler, U. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 2008, 321, 572–575.
Peters, J. W.; Schut, G. J.; Boyd, E. S.; Mulder, D. W.; Shepard, E. M.; Broderick, J. B.; King, P. W.; Adams, M. W. W. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 1350–1369.
Ogata, H.; Lubitz, W.; Higuchi, Y. Structure and function of [NiFe] hydrogenases. J. Biochem. 2016, 160, 251–258.
Jordan, P. C.; Patterson, D. P.; Saboda, K. N.; Edwards, E. J.; Miettinen, H. M.; Basu, G.; Thielges, M. C.; Douglas, T. Self-assembling biomolecular catalysts for hydrogen production. Nat. Chem. 2016, 8, 179–185.
Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.
Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.
Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.
Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.
Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.
Yu, Y.; Zhang, Y. N.; Wang, Y.; Chen, W. X.; Guo, Z. J.; Song, N. N.; Liang, M. M. Multiscale structural design of MnO2@GO superoxide dismutase nanozyme for protection against antioxidant damage. Nano Res. 2023, 16, 10763–10769.
Sun, X.; Sun, J. F.; Guo, L. Z.; Hou, L. R.; Yuan, C. Z. Understanding the crystal structure-dependent electrochemical capacitance of spinel and rock-salt Ni-Co oxides via density function theory calculations. RSC Adv. 2020, 10, 35611–35618.
Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.
Liu, Y. P.; Sheng, W. F.; Wu, Z. H. Synchrotron radiation and its applications in inorganic materials. J. Inorg. Mater. 2021, 36, 901–918.
Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Ríos, E.; Berry, F. J. Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: An XRD, XANES, EXAFS, and XPS study. J. Solid State Chem. 2000, 153, 74–81.
Wei, W.; Sun, P. Q.; Li, Z.; Song, K. S.; Su, W. Y.; Wang, B.; Liu, Y. Z.; Zhao, J. A surface-display biohybrid approach to light-driven hydrogen production in air. Sci. Adv. 2018, 4, eaap9253.
Wegelius, A.; Land, H.; Berggren, G.; Lindblad, P. Semisynthetic [FeFe]-hydrogenase with stable expression and H2 production capacity in a photosynthetic microbe. Cell Rep. Phys. Sci. 2021, 2, 100376.
Tang, P.; Gao, P.; Cui, X. H.; Chen, Z.; Fu, Q. F.; Wang, Z. X.; Mo, Y.; Liu, H.; Xu, C. H.; Liu, J. L. et al. Covalency competition induced active octahedral sites in spinel cobaltites for enhanced pseudocapacitive charge storage. Adv. Energy Mater. 2022, 12, 2102053.
Qi, J.; Lin, Y. P.; Chen, D. D.; Zhou, T. H.; Zhang, W.; Cao, R. Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2020, 59, 8917–8921.
Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.
Chen, Y. K.; Teng, H. T.; Lee, T. Y.; Wang, H. W. Rapid hydrogen generation from aluminum-water system by adjusting water ratio to various aluminum/aluminum hydroxide. Int. J. Energy Environ. 2014, 5, 87.