Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Strain engineering, as a powerful strategy to tune the optical and electrical properties of two-dimensional (2D) materials by deforming their crystal lattice, has attracted significant interest in recent years. 2D materials can sustain ultra-high strains, even up to 10%, due to the lack of dangling bonds on their surface, making them ideal brittle solids. This remarkable mechanical resilience, together with a strong strain-tunable band structure, endows 2D materials with a broad optical and electrical response upon strain. However, strain engineering based on 2D materials is restricted by their nanoscale and strain quantification troubles. In this study, we have modified a homebuilt three-points bending apparatus to transform it into a four-points bending apparatus that allows for the application of both compressive and tensile strains on 2D materials. This approach allows for the efficient and reproducible construction of a strain system and minimizes the buckling effect caused by the van der Waals interaction by adamantane encapsulation strategy. Our results demonstrate the feasibility of introducing compressive strain on 2D materials and the potential for tuning their optical and physical properties through this approach.
Naumis, G. G.; Barraza-Lopez, S.; Oliva-Leyva, M.; Terrones, H. Electronic and optical properties of strained graphene and other strained 2D materials: A review. Rep. Prog. Phys. 2017, 80, 096501.
Jiang, H. J.; Zheng, L.; Liu, Z.; Wang, X. W. Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2020, 2, 1077–1094.
Bissett, M. A.; Tsuji, M.; Ago, H. Strain engineering the properties of graphene and other two-dimensional crystals. Phys. Chem. Chem. Phys. 2014, 16, 11124–11138.
Chen, W. J.; Gui, X. C.; Yang, L. L.; Zhu, H.; Tang, Z. K. Wrinkling of two-dimensional materials: Methods, properties and applications. Nanoscale Horiz. 2019, 4, 291–320.
Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.
Li, W. B.; Qian, X. F.; Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 2021, 6, 829–846.
Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W.; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.
Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.
Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.
Wang, S. W.; Medina, H.; Hong, K. B.; Wu, C. C.; Qu, Y. D.; Manikandan, A.; Su, T. Y.; Lee, P. T.; Huang, Z. Q.; Wang, Z. M. et al. Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors. ACS Nano 2017, 11, 8768–8776
G.; Castellanos-Gomez, A.; Buscema, M.; Van Der Zant, H. S. J.; Steele, G. A.; Kuc, A.; Heine, T.; Schüller, C.; Korn, T. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2015, 2, 015006
Gant, P.; Huang, P.; De Lara, D. P.; Guo, D.; Frisenda, R.; Castellanos-Gomez, A. A strain tunable single-layer MoS2 photodetector. Mater. Today 2019, 27, 8–13.
Yang, R.; Lee, J.; Ghosh, S.; Tang, H.; Sankaran, R. M.; Zorman, C. A.; Feng, P. X. L. Tuning optical signatures of single- and few-layer MoS2 by blown-bubble bulge straining up to fracture. Nano Lett. 2017, 17, 4568–4575.
Liang, J.; Zhang, J.; Li, Z. Z.; Hong, H.; Wang, J. H.; Zhang, Z. H.; Zhou, X.; Qiao, R. X.; Xu, J. Y.; Gao, P. et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Lett. 2017, 17, 7539–7543.
Carrascoso, F.; Li, H.; Frisenda, R.; Castellanos-Gomez, A. Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2. Nano Res. 2021, 14, 1698–1703.
Carrascoso, F.; Frisenda, R.; Castellanos-Gomez, A. Biaxial versus uniaxial strain tuning of single-layer MoS2. Nano Mater. Sci. 2022, 4, 44–51.
Zhang, Q. T.; Yin, J. Spontaneous buckling-driven periodic delamination of thin films on soft substrates under large compression. J. Mechan. Phys. Solids 2018, 118, 40–57.
Chen, P. Y.; Sodhi, J.; Qiu, Y.; Valentin, T. M.; Steinberg, R. S.; Wang, Z. Y.; Hurt, R. H.; Wong, I. Y. Multiscale graphene topographies programmed by sequential mechanical deformation. Adv. Mater. 2016, 28, 3564–3571.
Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; Van Der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366.
Ly, T. H.; Yun, S. J.; Thi, Q. H.; Zhao, J. Edge delamination of monolayer transition metal dichalcogenides. ACS Nano 2017, 11, 7534–7541.
Lou, S.; Liu, Y.; Yang, F. Y.; Lin, S. R.; Zhang, R. P.; Deng, Y.; Wang, M.; Tom, K. B.; Zhou, F.; Ding, H. et al. Three-dimensional architecture enabled by strained two-dimensional material heterojunction. Nano Lett. 2018, 18, 1819–1825.
Reserbat-Plantey, A.; Kalita, D.; Han, Z.; Ferlazzo, L.; Autier-Laurent, S.; Komatsu, K.; Li, C.; Weil, R.; Ralko, A.; Marty, L. et al. Strain superlattices and macroscale suspension of graphene induced by corrugated substrates. Nano Lett. 2014, 14, 5044–5051.
Li, H.; Contryman, A. W.; Qian, X. F.; Ardakani, S. M.; Gong, Y. J.; Wang, X. L.; Weisse, J. M.; Lee, C. H.; Zhao, J. H.; Ajayan, P. M. et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 2015, 6, 7381
Niehues, I.; Schmidt, R.; Drüppel, M.; Marauhn, P.; Christiansen, D.; Selig, M.; Berghäuser, G.; Wigger, D.; Schneider, R.; Braasch, L. et al. Strain control of exciton-phonon coupling in atomically thin semiconductors. Nano Lett. 2018, 18, 1751–1757
Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.
He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936.
Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F., Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.
Scalise, E.; Houssa, M.; Pourtois, G.; Afanas′ev, V. V.; Stesmans, A. First-principles study of strained 2D MoS2. Phys. E: Low-Dimens. Syst. Nanostruct. 2014, 56, 416–421.
Dong, L.; Namburu, R. R.; O’Regan, T. P.; Dubey, M.; Dongare, A. M. Theoretical study on strain-induced variations in electronic properties of monolayer MoS2. J. Mater. Sci. 2014, 49, 6762–6771.
Hui, Y. Y.; Liu, X. F.; Jie, W. J.; Chan, N. Y.; Hao, J. H.; Hsu, Y. T.; Li, L. J.; Guo, W. L.; Lau, S. P. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 2013, 7, 7126–7131.
Brennan, C. J.; Nguyen, J.; Yu, E. T.; Lu, N. Interface adhesion between 2D materials and elastomers measured by buckle delaminations. Adv. Mater. Interfaces. 2015, 2, 1500176.
Li, H.; Sanchez-Santolino, G.; Puebla, S.; Frisenda, R.; Al-Enizi, A. M.; Nafady, A.; D'Agosta, R.; Castellanos-Gomez, A. Strongly anisotropic strain-tunability of excitons in exfoliated ZrSe3. Adv. Mater. 2022, 34, 2103571.
Li, H.; Lin, D. Y.; Di Renzo, A.; Puebla, S.; Frisenda, R.; Gan, X. T.; Quereda, J.; Xie, Y.; Al-Enizi, A. M.; Nafady, A. et al. Stretching ReS2 along different crystal directions: Anisotropic tuning of the vibrational and optical responses. Appl. Phys. Lett. 2022, 120, 063101.
Loginov, Y. N.; Stepanov, S. I.; Golodnov, A. I.; Mukanov, G. Z. Analysis of bending test technique for osteosynthesis titanium plate. KnE Eng. 2019, 1, 106–112.
Costa, P.; Ferreira, A.; Sencadas, V.; Viana, J. C.; Lanceros-Méndez, S. Electro-mechanical properties of triblock copolymer styrene-butadiene-styrene/carbon nanotube composites for large deformation sensor applications. Sens. Actuators A Phys. 2013, 201, 458–467.
Castellanos-Gomez, A.; Quereda, J.; Van Der Meulen, H. P.; Agraït, N.; Rubio-Bollinger, G. Spatially resolved optical absorption spectroscopy of single- and few-layer MoS2 by hyperspectral imaging. Nanotechnology 2016, 27, 115705.
Niu, Y.; Gonzalez-Abad, S.; Frisenda, R.; Marauhn, P.; Drüppel, M.; Gant, P.; Schmidt, R.; Taghavi, N. S.; Barcons, D.; Molina-Mendoza, A. J. et al. Thickness-dependent differential reflectance spectra of monolayer and few-layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials 2018, 8, 725.
Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.
Alcaire, M.; Aparicio, F. J.; Obrero, J.; López-Santos, C.; Garcia-Garcia, F. J.; Sánchez-Valencia, J. R.; Frutos, F.; Ostrikov, K.; Borrás, A.; Barranco, A. Plasma enabled conformal and damage free encapsulation of fragile molecular matter: From surface-supported to on-device nanostructures. Adv. Funct. Mater. 2019, 29, 1903535.
Blake, P.; Hill, E. W.; Neto, A. H.C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.
Li, Z. W.; Lv, Y. W.; Ren, L. W.; Li, J.; Kong, L. G.; Zeng, Y. J.; Tao, Q. Y.; Wu, R. X.; Ma, H. F.; Zhao, B. et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 2020, 11, 1151.
Jin, Y.; Ren, Q.; Liu, J.; Zhang, Y.; Zheng, H.; Zhao, P. Stretching graphene to 3.3% strain using formvar-reinforced flexible substrate. Exp. Mechan. 2022, 62, 761–767.
López-Suárez, M.; Neri, I.; Rurali, R. Band gap engineering of MoS2 upon compression. J. Appl. Phys. 2016, 119, 165105
Schmidt, R.; Niehues, I.; Schneider, R.; Drüppel, M.; Deilmann, T.; Rohlfing, M.; De Vasconcellos, S. M.; Castellanos-Gomez, A.; Bratschitsch, R. Reversible uniaxial strain tuning in atomically thin WSe2. 2D Mater. 2016, 3, 021011.
Xu, C. C.; Zhang, S.; Du, H. Z.; Xue, T.; Kang, Y. L.; Zhang, Y.; Zhao, P.; Li, Q. Y. Revisiting frictional characteristics of graphene: Effect of in-plane straining. ACS Appl. Mater. Interfaces 2022, 14, 41571–41576.
Frisenda, R.; Niu, Y.; Gant, P.; Molina-Mendoza, A. J.; Schmidt, R.; Bratschitsch, R.; Liu, J. X.; Fu, L.; Dumcenco, D.; Kis, A. et al. Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials. J. Phys. D Appl. Phys. 2017, 50, 074002.
Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; De Lara, D. P.; Jarillo-Herrero, P.; Gorbachev, R. V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68.
Blaszczyk-Lezak, I.; Aparicio, F. J.; Borrás, A.; Barranco, A.; Álvarez-Herrero, A.; Fernández-Rodríguez, M.; González-Elipe, A. R. Optically active luminescent perylene thin films deposited by plasma polymerization. J. Phys. Chem. C 2009, 113, 431–438.
Idígoras, J.; Aparicio, F. J.; Contreras-Bernal, L.; Ramos-Terrón, S.; Alcaire, M.; Sánchez-Valencia, J. R.; Borras, A.; Barranco, Á.; Anta, J. A. Enhancing moisture and water resistance in perovskite solar cells by encapsulation with ultrathin plasma polymers. ACS Appl. Mater. Interfaces 2018, 10, 11587–11594.
780
Views
161
Downloads
3
Crossref
4
Web of Science
5
Scopus
0
CSCD
Altmetrics
Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.