AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhancing zinc–air battery performance by constructing three-dimensional N-doped carbon coating multiple valence Co and MnO heterostructures

Qi Liu1Panzhe Qiao3Miaomiao Tong2Ying Xie2Xinxin Zhang2Kuo Lin1Zhijian Liang2Lei Wang2( )Honggang Fu1,2( )
Key Laboratory of Superlight Materials and Surface Technology of the Ministry of Education of the People’s Republic of China, Harbin Engineering University, Harbin 150080, China
Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
Show Author Information

Graphical Abstract

Three-dimensional (3D) structures composed of N-doped carbon coating multiple valence Co and MnO heterostructures supported on carbon cloth substrate (Co-MnO@NC/CC) has been synthesized by combining electrochemical deposition with pyrolytic strategy. The synergy between multiple valence cobalt and MnO significantly improves the oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) activity, and the MnO acts as the main OER active site could significantly optimize the energy barrier of O* → OOH*, thus the assembled Zn–air battery shows high peak power density of 175 mW·cm−2 and a small charging-discharging voltage gap of 0.75 V at 10 mA·cm−2.

Abstract

Developing highly-efficient bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) electrocatalysts is crucial for the widespread application of rechargeable Zn–air batteries (ZABs). Herein, an efficiency electrodeposition and pyrolytic strategy to synthesize the three-dimensional (3D) N-doped carbon coating multiple valence Co and MnO heterostructures supported on carbon cloth substrate (Co-MnO@NC/CC). It contains Co–Co, Co–N, and Co–O bonds, which synergistically enhance the oxygen reaction activity with MnO. It exhibits a working potential of 1.473 V at 10 mA·cm−2 for OER and onset potential of 0.97 V for ORR. Theory calculations demonstrate that the synergy between cobalt and manganese species could optimize the d-band center and reduce the energy barrier of Co-MnO@NC/CC for both OER and ORR processes. Besides, the MnO acts as the main OER active site could significantly optimize the energy barrier of O* → OOH*, thus further promoting the OER activity. It can be directly used as the air-cathode for both liquid-state and solid-state ZABs, which could afford a small voltage gap of 0.75 V at 10 mA·cm−2, a high power density of 172.5 mW·cm−2 and a long-term durability for 400 h, surpassing those of the Pt/C + RuO2-based ZAB. Importantly, the assembled batteries show potential applications in portable devices.

Electronic Supplementary Material

Download File(s)
12274_2023_6404_MOESM1_ESM.pdf (2.8 MB)

References

[1]

Sun, W.; Wang, F.; Zhang, B.; Zhang, M. Y.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C. S. et al. A rechargeable zinc–air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51.

[2]

Wang, Q. C.; Tang, S. H.; Wang, Z. Q.; Wu, J.; Bai, Y.; Xiong, Y.; Yang, P. Y.; Wang, Y. C.; Tan, Y.; Liu, W. et al. Electrolyte tuned robust interface toward fast-charging Zn–air battery with atomic Mo site catalyst. Adv. Funct. Mater. 2023, 33, 2307390.

[3]

Sarkar, S.; Biswas, A.; Siddharthan, E. E.; Thapa, R.; Dey, R. S. Strategic modulation of target-specific isolated Fe, Co single-atom active sites for oxygen electrocatalysis impacting high power Zn–air battery. ACS Nano 2022, 16, 7890–7903.

[4]

Arafat, Y.; Azhar, M. R.; Zhong, Y. J.; Abid, H. R.; Tadé, M. O.; Shao, Z. P. Advances in zeolite imidazolate frameworks (ZIFs) derived bifunctional oxygen electrocatalysts and their application in zinc–air batteries. Adv. Energy Mater. 2021, 11, 2100514.

[5]

Huang, Y. F.; Kong, F. T.; Pei, F. L.; Wang, L. Z.; Cui, X. Z.; Shi, J. L. Modulating the electronic structure of hollow Cu/Cu3P hetero-nanoparticles to boost the oxygen reduction performance in long-lasting Zn–air battery. EcoMat 2023, 5, e12335.

[6]

Chen, X.; Pu, J.; Hu, X. H.; An, L.; Jiang, J. J.; Li, Y. J. Confinement synthesis of bimetallic MOF-derived defect-rich nanofiber electrocatalysts for rechargeable Zn–air battery. Nano Res. 2022, 15, 9000–9009.

[7]

Liu, Q.; Wang, L.; Fu, H. G. Research progress on the construction of synergistic electrocatalytic ORR/OER self-supporting cathodes for zinc–air batteries. J. Mater. Chem. A 2023, 11, 4400–4427.

[8]

Zheng, H. R.; Wang, S. B.; Liu, S. J.; Wu, J.; Guan, J. P.; Li, Q.; Wang, Y. C.; Tao, Y.; Hu, S. Y.; Bai, Y. et al. The heterointerface between Fe1/NC and selenides boosts reversible oxygen electrocatalysis. Adv. Funct. Mater. 2023, 33, 2300815.

[9]

Lyu, Z. Y.; Koh, J. J.; Lim, G. J. H.; Zhang, D. W.; Xiong, T.; Zhang, L.; Liu, S. Q.; Duan, J. F.; Ding, J.; Wang, J. et al. Direct ink writing of programmable functional silicone-based composites for 4D printing applications. Interdiscip. Mater. 2022, 1, 507–516.

[10]

Gao, Y.; Kong, D. B.; Cao, F. L.; Teng, S.; Liang, T.; Luo, B.; Wang, B.; Yang, Q. H.; Zhi, L. J. Synergistically tuning the graphitic degree, porosity, and the configuration of active sites for highly active bifunctional catalysts and Zn–air batteries. Nano Res. 2022, 15, 7959–7967.

[11]

Zhang, L.; Zhu, J. W.; Li, X.; Mu, S. C.; Verpoort, F.; Xue, J. M.; Kou, Z. K.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.

[12]

Yang, G. G.; Zhu, J. W.; Yuan, P. F.; Hu, Y. F.; Qu, G.; Lu, B. A.; Xue, X. Y.; Yin, H. B.; Cheng, W. Z.; Cheng, J. Q. et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.

[13]

Liu, W. Q.; Bai, P. Y.; Wei, S. L.; Yang, C. C.; Xu, L. Gadolinium changes the local electron densities of nickel 3D orbitals for efficient electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2022, 61, e202201166.

[14]

Jiang, Z.; Liu, X. R.; Liu, X. Z.; Huang, S.; Liu, Y.; Yao, Z. C.; Zhang, Y.; Zhang, Q. H.; Gu, L.; Zheng, L. R. et al. Interfacial assembly of binary atomic metal-N x sites for high-performance energy devices. Nat. Commun. 2023, 14, 1822.

[15]

Wang, Q. C.; Tan, Y.; Tang, S. H.; Liu, W.; Zhang, Y.; Xiong, X.; Lei, Y. P. Edge-hosted Mn-N4-C12 site tunes adsorption energy for ultralow-temperature and high-capacity solid-state Zn–air battery. ACS Nano 2023, 17, 9565–9574.

[16]

Wang, T. T.; Liu, M.; Chaemchuen, S.; Wang, J. C.; Yuan, Y.; Chen, C.; Qiao, A.; Verpoort, F.; Kou, Z. K. Constructing a stable cobalt-nitrogen-carbon air cathode from coordinatively unsaturated zeolitic-imidazole frameworks for rechargeable zinc–air batteries. Nano Res. 2022, 15, 5895–5901.

[17]

Zhang, W.; Xu, C. H.; Zheng, H.; Li, R.; Zhou, K. Oxygen-rich cobalt-nitrogen-carbon porous nanosheets for bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 2022, 32, 2200763.

[18]

Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn–air batteries. Adv. Mater. 2019, 31, 1901666.

[19]

Huang, Q. E.; Wang, B. L.; Ye, S.; Liu, H.; Chi, H. B.; Liu, X. Y.; Fan, H. J.; Li, M. R.; Ding, C. M.; Li, Z. et al. Relation between water oxidation activity and coordination environment of C,N-coordinated mononuclear Co catalyst. ACS Catal. 2022, 12, 491–496.

[20]

Zhang, X. R.; Xu, X. M.; Yao, S. X.; Hao, C.; Pan, C.; Xiang, X.; Tian, Z. Q.; Shen, P. K.; Shao, Z. P.; Jiang, S. P. Boosting electrocatalytic activity of single atom catalysts supported on nitrogen-doped carbon through N coordination environment engineering. Small 2022, 18, 2105329.

[21]

Luo, H.; Jiang, W. J.; Niu, S.; Zhang, X.; Zhang, Y.; Yuan, L. P.; He, C. X.; Hu, J. S. Self-catalyzed growth of Co-N-C nanobrushes for efficient rechargeable Zn–air batteries. Small 2020, 16, 2001171.

[22]

Liu, Y. S.; Li, Z. X.; Wang, S. Z.; Xuan, J. N.; Xiong, D. B.; Zhou, L. N.; Zhou, J. Q.; Wang, J.; Yang, Y. H.; Du, Y. Hierarchical porous yolk–shell Co-N-C nanocatalysts encaged ingraphene nanopockets for high-performance Zn–air battery. Nano Res. 2023, 16, 8893–8901.

[23]

Morales, D. M.; Kazakova, M. A.; Dieckhöfer, S.; Selyutin, A. G.; Golubtsov, G. V.; Schuhmann, W.; Masa, J. Trimetallic Mn-Fe-Ni oxide nanoparticles supported on multi-walled carbon nanotubes as high-performance bifunctional ORR/OER electrocatalyst in alkaline media. Adv. Funct. Mater. 2020, 30, 1905992.

[24]

Yuan, S.; Peng, J. Y.; Cai, B.; Huang, Z. H.; Garcia-Esparza, A. T.; Sokaras, D.; Zhang, Y. R.; Giordano, L.; Akkiraju, K.; Zhu, Y. G. et al. Tunable metal hydroxide-organic frameworks for catalysing oxygen evolution. Nat. Mater. 2022, 21, 673–680.

[25]

Peng, C. K.; Lin, Y. C.; Chiang, C. L.; Qian, Z. X.; Huang, Y. C.; Dong, C. L.; Li, J. F.; Chen, C. T.; Hu, Z. W.; Chen, S. Y. et al. Zhang-Rice singlets state formed by two-step oxidation for triggering water oxidation under operando conditions. Nat. Commun. 2023, 14, 529.

[26]

Plate, P.; Höhn, C.; Bloeck, U.; Bogdanoff, P.; Fiechter, S.; Abdi, F. F.; van de Krol, R.; Bronneberg, A. C. On the origin of the OER activity of ultrathin manganese oxide films. ACS Appl. Mater. Interfaces 2021, 13, 2428–2436.

[27]

Tian, H.; Zeng, L. M.; Huang, Y. F.; Ma, Z. H.; Meng, G.; Peng, L. X.; Chen, C.; Cui, X. Z.; Shi, J. L. In situ electrochemical Mn(III)/Mn(IV) generation of Mn(II)O electrocatalysts for high-performance oxygen reduction. Nano-Micro Lett. 2020, 12, 161

[28]

Kordek, K.; Jiang, L. X.; Fan, K. C.; Zhu, Z. J.; Xu, L.; Al-Mamun, M.; Dou, Y. H.; Chen, S.; Liu, P. R.; Yin, H. J. et al. Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc–air batteries. Adv. Energy Mater. 2019, 9, 1802936.

[29]

Song, F.; Hu, X. L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484.

[30]

Zhao, Y.; He, J. F.; Dai, M. Z.; Zhao, D. P.; Wu, X.; Liu, B. D. Emerging CoMn-LDH@MnO2 electrode materials assembled using nanosheets for flexible and foldable energy storage devices. J. Energy Chem. 2020, 45, 67–73.

[31]

Andres-Garcia, E.; Oar-Arteta, L.; Gascon, J.; Kapteijn, F. ZIF-67 as silver-bullet in adsorptive propane/propylene separation. Chem. Eng. J. 2019, 360, 10–14.

[32]

Yoo, J. M.; Shin, H.; Chung, D. Y.; Sung, Y. E. Carbon shell on active nanocatalyst for stable electrocatalysis. Acc. Chem. Res. 2022, 55, 1278–1289.

[33]

Li, F.; Qin, T. T.; Sun, Y. P.; Jiang, R. J.; Yuan, J. F.; Liu, X. Q.; O’Mullane, A. P. Preparation of a one-dimensional hierarchical MnO@CNT@Co-N/C ternary nanostructure as a high-performance bifunctional electrocatalyst for rechargeable Zn–air batteries. J. Mater. Chem. A 2021, 9, 22533–22543.

[34]

Cheng, Q. Q.; Han, S. B.; Mao, K.; Chen, C.; Yang, L. J.; Zou, Z. Q.; Gu, M.; Hu, Z.; Yang, H. Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 2018, 52, 485–493.

[35]

Sun, K. S.; Shen, Y. F.; Min, J.; Pang, J. X.; Zheng, Y.; Gu, T. T.; Wang, G.; Chen, L. MOF-derived Zn/Co co-doped MnO/C microspheres as cathode and Ti3C2@Zn as anode for aqueous zinc-ion full battery. Chem. Eng. J. 2023, 454, 140394.

[36]

Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.

[37]

Wang, X. R.; Liu, J. Y.; Liu, Z. W.; Wang, W. C.; Luo, J.; Han, X. P.; Du, X. W.; Qiao, S. Z.; Yang, J. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 2018, 30, 1800005.

[38]

Lu, X. F.; Chen, Y.; Wang, S. B.; Gao, S. Y.; Lou, X. W. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–air batteries. Adv. Mater. 2019, 31, 1902339.

[39]

Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2–FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.

[40]

Zhang, M. T.; Li, H.; Chen, J. X.; Ma, F. X.; Zhen, L.; Wen, Z. H.; Xu, C. Y. High-loading Co single atoms and clusters active sites toward enhanced electrocatalysis of oxygen reduction reaction for high-performance Zn–air battery. Adv. Funct. Mater. 2023, 33, 2209726.

[41]

Wang, M. L.; Yao, Y.; Tian, Y. H.; Yuan, Y. F.; Wang, L. G.; Yang, F. Y.; Ren, J. J.; Hu, X. R.; Wu, F.; Zhang, S. Q. et al. Atomically dispersed manganese on carbon substrate for aqueous and aprotic CO2 electrochemical reduction. Adv. Mater. 2023, 35, 2210658.

[42]

Zhang, X. C.; Shi, Y. N.; Xu, J.; Ouyang, Q. Y.; Zhang, X.; Zhu, C. L.; Zhang, X. L.; Chen, Y. J. Identification of the intrinsic dielectric properties of metal single atoms for electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 27.

[43]

Zhou, F. L.; Gan, M. X.; Yan, D. F.; Chen, X. L.; Peng, X. Hydrogen-rich pyrolysis from Ni–Fe heterometallic schiff base centrosymmetric cluster facilitates NiFe alloy for efficient OER electrocatalysts. Small 2023, 19, 2208276.

[44]

Liu, Q.; Wang, L.; Liu, X.; Yu, P.; Tian, C. G.; Fu, H. G. N-doped carbon-coated Co3O4 nanosheet array/carbon cloth for stable rechargeable Zn–air batteries. Sci. China Mater. 2019, 62, 624–632.

[45]

Chen, B.; Hu, P.; Yang, F.; Hua, X. J.; Yang, F. F.; Zhu, F.; Sun, R. Y.; Hao, K.; Wang, K. S.; Yin, Z. Y. In situ porousized MoS2 Nano islands enhance HER/OER bifunctional electrocatalysis. Small 2023, 19, 2207177

[46]

Zhang, W. X.; Song, H.; Cheng, Y.; Liu, C.; Wang, C. H.; Khan, M. A. N.; Zhang, H.; Liu, J. Z.; Yu, C. Z.; Wang, L. J. et al. Core–shell Prussian blue analogs with compositional heterogeneity and open cages for oxygen evolution reaction. Adv. Sci. 2019, 6, 1801901.

[47]

Liu, Q.; Liu, X.; Xie, Y.; Sun, F. F.; Liang, Z. J.; Wang, L.; Fu, H. G. N-doped carbon coating enhances the bifunctional oxygen reaction activity of CoFe nanoparticles for a highly stable Zn–air battery. J. Mater. Chem. A 2020, 8, 21189–21198.

[48]

Liu, S. H.; Wang, Z. Y.; Zhou, S.; Yu, F. J.; Yu, M. Z.; Chiang, C. Y.; Zhou, W. Z.; Zhao, J. J.; Qiu, J. S. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 2017, 29, 1700874.

[49]

Xiong, Z. R.; Hu, C.; Luo, X. F.; Zhou, W. D.; Jiang, Z. Z.; Yang, Y.; Yu, T.; Lei, W.; Yuan, C. L. Field-free improvement of oxygen evolution reaction in magnetic two-dimensional heterostructures. Nano Lett. 2021, 21, 10486–10493.

Nano Research
Pages 5104-5113
Cite this article:
Liu Q, Qiao P, Tong M, et al. Enhancing zinc–air battery performance by constructing three-dimensional N-doped carbon coating multiple valence Co and MnO heterostructures. Nano Research, 2024, 17(6): 5104-5113. https://doi.org/10.1007/s12274-023-6404-5
Topics:

643

Views

6

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 16 November 2023
Revised: 06 November 2023
Accepted: 08 December 2023
Published: 13 January 2024
© Tsinghua University Press 2023
Return